Questions tagged «generative-adversarial-networks»

9
人工智能容易受到黑客攻击吗?
论文《对抗设置中的深度学习的局限性》探讨了攻击者如何破坏神经网络,攻击者可以操纵神经网络训练的数据集。作者尝试了一种旨在读取手写数字的神经网络,通过使训练了该神经网络的手写数字样本失真来破坏其阅读能力。 我担心恶意参与者可能会尝试入侵AI。例如 愚弄自动驾驶汽车以误解停车标志与速度限制。 绕过面部识别,例如用于ATM的面部识别。 绕过垃圾邮件过滤器。 电影评论,酒店等的愚蠢情绪分析 绕过异常检测引擎。 伪造语音命令。 对基于机器学习的医学预测进行了错误分类。 什么样的对抗作用可能会破坏世界?我们如何预防呢?

3
了解GAN损失函数
我正在努力理解GAN损失功能,这在理解生成对抗网络(由Daniel Seita撰写的博客文章)中提供。 在标准的交叉熵损失中,我们有一个通过S型函数进行的输出以及所得的二进制分类。 西埃塔州 因此,对于[每个]数据点x1x1个x_1及其标签,我们得到以下损失函数... H((x1,y1),D)=−y1logD(x1)−(1−y1)log(1−D(x1))H((x1,y1),D)=−y1log⁡D(x1)−(1−y1)log⁡(1−D(x1)) H((x_1, y_1), D) = -y_1 \log D(x_1) - (1 - y_1) \log (1 - D(x_1)) 这只是期望的对数,这是有道理的,但是在GAN损失函数中,我们如何在同一迭代中处理来自真实分布的数据和来自生成模型的数据呢?

2
生成对抗网络如何工作?
我正在阅读有关生成对抗网络(GAN)的信息,对此我有些怀疑。到目前为止,我了解到,在GAN中,有两种不同类型的神经网络:一种是生成型(GGG),另一种是判别型(DDD)。生成神经网络生成一些数据,这些数据由判别神经网络判断正确性。GAN通过将损失函数传递给两个网络来学习。 区分性(DDD)神经网络最初如何知道GGG生成的数据是否正确?我们是否必须先训练DDD然后将其与GGG一起添加到GAN中? 让我们考虑我训练有素的DDD网,它可以将图片分类的准确率达到90%。如果我们将此DDD网添加到GAN,则有10%的概率会将图像分类为错误。如果我们用这个DDD网络训练GAN,那么在分类图像时,它也会有同样的10%错误吗?如果是,那么GAN为何显示出令人满意的结果?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.