在CNN中,每个新滤波器对每个输入通道的权重是否不同,还是在输入通道中使用的每个滤波器的权重相同?
我的理解是,卷积神经网络的卷积层具有四个维度:input_channels,filter_height,filter_width,number_of_filters。此外,据我了解,每个新过滤器都只是在所有input_channels(或上一层的特征/激活图)上盘旋。 但是,CS231下图显示了每个滤波器(红色)应用于单个通道,而不是跨通道使用相同的滤波器。这似乎表明每个通道都有一个单独的滤镜(在这种情况下,我假设它们是输入图像的三个颜色通道,但是对所有输入通道都适用)。 这令人困惑-每个输入通道是否都有不同的唯一过滤器? 资料来源:http : //cs231n.github.io/convolutional-networks/ 上图似乎与奥雷利(O'reilly)的“深度学习基础”节选中的矛盾: “ ...过滤器不仅可以在单个要素地图上运行,而且还可以在特定图层上生成的全部要素地图上运行...因此,要素地图必须能够在多个实体上进行操作,不只是区域” ...此外,据我了解,以下这些图像表示THESAME过滤器仅在所有三个输入通道上卷积(与上面的CS231图形相反):