3
了解GAN损失函数
我正在努力理解GAN损失功能,这在理解生成对抗网络(由Daniel Seita撰写的博客文章)中提供。 在标准的交叉熵损失中,我们有一个通过S型函数进行的输出以及所得的二进制分类。 西埃塔州 因此,对于[每个]数据点x1x1个x_1及其标签,我们得到以下损失函数... H((x1,y1),D)=−y1logD(x1)−(1−y1)log(1−D(x1))H((x1,y1),D)=−y1logD(x1)−(1−y1)log(1−D(x1)) H((x_1, y_1), D) = -y_1 \log D(x_1) - (1 - y_1) \log (1 - D(x_1)) 这只是期望的对数,这是有道理的,但是在GAN损失函数中,我们如何在同一迭代中处理来自真实分布的数据和来自生成模型的数据呢?