Questions tagged «pattern-recognition»

4
识别人工制作的媒体有哪些策略?
随着廉价地创建假图片,假声音和假视频的能力不断增强,识别真实和不真实的问题变得越来越严重。甚至现在,我们仍然看到了一些应用程序示例,这些应用程序以很少的成本创建了伪媒体(请参阅Deepfake,FaceApp等)。 显然,如果以错误的方式使用这些应用程序,它们可能会被用于损害他人的形象。Deepfake可以使一个人对伴侣不忠。可以使用另一个应用程序来使它看起来像政客所说的那样。 有哪些可用于识别和保护人造介质的技术?

2
深度残差网络是否应被视为网络的整体?
问题是关于深度残留网络(ResNets)的体系结构。该模型在所有五个主要方面均赢得了“ 2015年大规模视觉识别挑战赛”(ILSVRC2015)的第一名: ImageNet分类:“超深”(Yann引用)152层网 ImageNet检测:比第二个好16% ImageNet本地化:比第二名好27% COCO检测:比第二名好11% COCO细分:比第二名好12% 资料来源: MSRA @ ILSVRC和COCO 2015竞赛(演示,第二张幻灯片) 下一篇文章中描述了这项工作: 用于图像识别的深度残差学习(2015,PDF) Microsoft研究团队(ResNets的开发人员:何凯明,张向宇,任少清,孙健)在其文章中: “ 深度残留网络中的身份映射(2016年) ” 指出深度起着关键作用: “ 我们通过一个简单但必不可少的概念获得这些结果-更深入。这些结果证明了突破深度极限的潜力。 ” 他们的演讲中也强调了这一点(更深-更好): -“更深层次的模型不应具有更高的训练误差。” -“更深的ResNet具有较低的训练误差,也具有较低的测试误差。” -“更深的ResNet具有更低的错误。” -“所有人都将从更深的功能中受益–累积收益!” -“更深的更好。” 这是34层残差的结构(供参考): 但是最近,我发现了一种理论,该理论引入了对残差网络的新颖解释,从而表明它们是指数集合。 残留网络是相对浅网络的指数集合(2016) Deep Resnet被描述为许多浅层网络,其输出集中在不同的深度。文章中有一张图片。我附上解释: 残留网络通常显示为(a),它是等式(1)的自然表示。当我们将此公式扩展为方程式(6)时,我们获得了3块残差网络(b)的分解图。从这个角度来看,很明显,残余网络具有连接输入和输出的O(2 ^ n)个隐式路径,添加一个块会使路径数量加倍。 在文章的结尾指出: 不是深度,而是使残留网络强大的整体。残留网络推动了网络多样性的极限,而不是网络深度的极限。我们提出的未分解视图和病灶研究表明,残差网络是指数级许多网络的隐含集合。如果大多数造成梯度的路径与网络的整体深度相比都非常短,那么深度增加 本身并不是残余网络的关键特征。我们现在认为,多重性(即网络在路径数方面的可表达性)起着关键作用。 但是,只有最近的理论可以得到证实或反驳。有时会发生一些理论被驳回而文章被撤回的情况。 我们到底应该把ResNets视为一个整体吗?集合还是深度使残差网络如此强大?甚至开发人员自己也可能不太了解自己的模型代表什么以及模型中的关键概念是什么?

3
使用神经网络识别矩阵中的模式
我正在尝试开发一种神经网络,该网络可以识别CAD模型中的设计特征(即槽,凸台,孔,凹穴,台阶)。 我打算用于网络的输入数据是anxn矩阵(其中n是CAD模型中的面数)。矩阵右上角三角形中的“ 1”表示两个面之间的凸关系,而左下角三角形中的“ 1”表示凹关系。两个位置均为零表示面不相邻。下图给出了这样一个矩阵的例子。 可以说,我将最大模型尺寸设置为20个面,并对小于此尺寸的任何物体应用填充,以使网络输入的尺寸恒定。 我希望能够识别5种不同的设计特征,因此将具有5种输出神经元-[槽,袋,孔,凸台,台阶] 我会说这成为一种“模式识别”问题,对吗?例如,如果我为网络提供了许多训练模型-以及描述模型中存在的设计特征的标签,网络会学会识别与某些设计特征相关的矩阵中表示的特定邻接模式吗? 我是机器学习的一个完整的初学者,我试图了解这种方法是否有效-如果需要更多信息来理解问题,请发表评论。任何输入或帮助,将不胜感激,谢谢。

2
使用AI或神经网络进行徽标检测
我正在尝试检测视频文件中的电视频道徽标,因此只需给定输入.mp4视频,即可检测它是否在特定帧(例如第一帧)中存在该徽标。 我们预先有该徽标(尽管可能不是%100的相同尺寸),并且位置始终是固定的。 我已经有一个基于模式匹配的方法。但这要求图案必须为%100相同大小。我想使用深度学习和神经网络来实现这一目标。我怎样才能做到这一点?相信CNN可以有更高的效率?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.