赛车场大气条件


6

在奥运会期间,评论员对保持赛车场非常特殊的大气条件(包括让气闸进入和退出建筑物)的必要性进行了大讨论。

他们说,气氛非常温暖和潮湿。

为什么赛车场事件需要那些精确条件?

我怀疑高温会降低空气密度,从而降低风阻,但这纯粹是猜测。我不知道湿度会如何帮助您,肯定会再次增加空气密度!

而且,在如此高的温度下,运动员是否有过热的危险?


很高兴知道非常温暖潮湿在数字上意味着什么。我的第一个猜测是,温度约为25°C,湿度有助于冷却,因为汗液更容易蒸发。另一个想法是,这是为了防止由于温度和湿度的变化而使轨道制成的材料“工作”。如果这个说法是真的……
巴恩(Baarn)2012年

@ WalterMaier-Murdnelch现在已经有几个星期了,所以我不记得确切的数字了,但是我认为它比那更接近30(也许甚至超过)。虽然这个数字或60%的湿度似乎仍在我的脑海中。干燥的空气会使汗液更容易蒸发吗?(显然是28 C)
GordonM

@ WalterMaier-Murdnelch-高湿度不会使汗液更容易蒸发-相反,它会使皮肤上的汗液积聚(并滴落)并阻碍冷却。不过,湿度可能会改善轮胎的牵引力。
Daniel R Hicks

理论家告诉我们,在正常范围内的湿度差异不会严重影响空气粘度。但是,在不同条件下骑自行车的自行车手会告诉您,高湿度似乎会使空气更加粘稠。
Daniel R Hicks 2012年

当然,我混淆了湿度和干旱。
巴恩2012年

Answers:


7

自行车上的总空气动力学阻力的方程式已被很好地理解,并且正确的是,空气密度在其中起作用:密度越高,阻力越大。如您所料,密度随温度升高而降低,因此,热空气的密度小于冷空气。密度随压力降低也可能不足为奇。但是,显然与直觉相反,潮湿的空气比干燥的空气密度低。最简单的解释是,水分子包含两个氢原子和一个氧原子,因此它们的分子质量为18 g / mol,而干燥空气的分子质量约为29 g / mol。您可以查看有关空气密度的维基百科页面,以了解更多详细信息。


4

如果其他所有条件都相同(并且我的计算是正确的话),那么仅空气密度就会对速度产生相当大的影响。

根据方程式和本页关于循环空气动力学的信息,以及Wolfram Alpha空气密度值,我得出了:

At 300 watts, at  0*C, will travel at 39.34 km/h
At 300 watts, at 10*C, will travel at 40.06 km/h
At 300 watts, at 20*C, will travel at 40.77 km/h
At 300 watts, at 30*C, will travel at 41.46 km/h
At 300 watts, at 40*C, will travel at 42.14 km/h

这是基于“滴中”阻力系数/额叶面积值的,该值位于海平面上的一致水平上(我认为是在海平面上,尚不确定)

换一种方式:

To travel at 13.8m/s in 0*C requires  478.45 watts
To travel at 13.8m/s in 10*C requires 461.43 watts
To travel at 13.8m/s in 20*C requires 445.52 watts
To travel at 13.8m/s in 30*C requires 430.72 watts
To travel at 13.8m/s in 40*C requires 417.03 watts

(13.8m / s约为50km / h,任意数)

为了“展示我的工作”,这是我用来计算上述内容的Python脚本:

#!/usr/bin/env python2
"""Impact on air-density on cycling speeds

Written in Python 2.7
"""


def Cd(desc):
    """Coefficient of drag

    Coefficient of drag is a dimensionless number that relates an
    objects drag force to its area and speed
    """

    values = {
        "tops": 1.15, # Source: "Bicycling Science" (Wilson, 2004)
        "hoods": 1.0, # Source: "Bicycling Science" (Wilson, 2004)
        "drops": 0.88, # Source: "The effect of crosswinds upon time trials" (Kyle,1991)
        "aerobars": 0.70, # Source: "The effect of crosswinds upon time trials" (Kyle,1991)
        }
    return values[desc]


def A(desc):
    """Frontal area is typically measured in metres squared. A
    typical cyclist presents a frontal area of 0.3 to 0.6 metres
    squared depending on position. Frontal areas of an average
    cyclist riding in different positions are as follows

    http://www.cyclingpowermodels.com/CyclingAerodynamics.aspx
    """

    values = {'tops': 0.632, 'hoods': 0.40, 'drops': 0.32}

    return values[desc]


def airdensity(temp):
    """Air density in kg/m3
    Values are at sea-level (I think..?)

    Values from changing temperature on:
    http://www.wolframalpha.com/input/?i=%28air+density+at+40%C2%B0C%29

    Could calculate this:
    http://en.wikipedia.org/wiki/Density_of_air
    """
    values = {
        0: 1.293,
        10: 1.247,
        20: 1.204,
        30: 1.164,
        40: 1.127,
        }

    return values[temp]


"""
F = CdA p [v^2/2]
where:
F = Aerodynamic drag force in Newtons.
p = Air density in kg/m3 (typically 1.225kg in the "standard atmosphere" at sea level) 
v = Velocity (metres/second). Let's say 10.28 which is 23mph
"""


def required_wattage():
    """What wattage will the mathematicallytheoretical cyclist need to
    output to travel at a specific speed?
    """

    position = "drops"

    for temp in (0, 10, 20, 30, 40):
        v = 13.8 # m/s
        F = Cd(position) * A(position) * airdensity(temp) * ((v**2)/2)
        watts = v*F
        print "To travel at %sm/s in %s*C requires %.02f watts" % (v, temp, watts)


def speed_from_wattage():
    """Given a specific force output, how fast will a
    mathematicallytheoretical cyclist travel?
    """
    from math import sqrt

    position = "drops"

    for temp in (0, 10, 20, 30, 40):
        # Calculate some reasonable number for F... I think..? Made
        # sense when I wrote it, but now slightly confusing
        v = 13.8 # m/s
        watts = 300
        F = watts/v # because watts=v*F

        # "F = CdA p [v^2/2]" solved for "v" with sympy:
        """
        from sympy import symbols, solve, Eq
        F, Cd, A, airdensity, v = symbols("F Cd A airdensity v")
        solve(Eq(F, Cd * A * airdensity * (v**2/2)), v)
        """

        v = sqrt(2) * sqrt(F / (Cd(position) * A(position) * airdensity(temp)))
        v_in_km_h = ((v * 60*60)/1000)

        print "At %s watts, at %d*C, will travel at %.02f km/h" % (
            watts, temp, v_in_km_h)


if __name__ == '__main__':
    speed_from_wattage()
    required_wattage()

2
很好,尽管您错过了滚动阻力所需的总功率的贡献,这大约是Crr 质量 g * v,其中g〜= 9.8 m / sec ^ 2。似乎Wolfram的空气密度计算是在假设大气压力和湿度的前提下进行的,因为您没有输入。此外,我建议在cyclingpowermodels.com页面上使用方法4。
R. Chung

@ R.Chung Hm,好点..但是在这种情况下应该没什么关系吧?我猜想滚动阻力将是一个恒定值,它等于要求的功率,默认的气压/湿度默认值是任意的(不知道“奥运会授权”值)
dbr 2012年

1
哦,我只是在评论您对功率需求的计算。在示例中使用的速度下,滚动阻力约为50瓦左右。OTOH,如果您只是在看功率需求与空气密度的差异,那么您会更容易注意到空气密度x%的变化转化为完全相同的空气阻力x%的差异。
R. Chung
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.