对于n体问题,没有通用的解析解决方案可以产生解析函数,该解析函数可用于在任意时间t精确给出n体系统的状态。但是,在某些n体系统的特殊情况下,已知解析功能。
以几乎相同的方式,没有通用的算法可以预测任意图灵机的结果。虽然,有许多种可以确定永远停止或运行的车床。
这两个结果相等吗?其中之一的证据是否暗示另一个?能够解决停止问题的魔术机是否能够精确地预测n体系统的状态?反之亦然,对n体问题的一般解析解是否可以让我们在任意图灵机上确定停机问题?
我最初对如何解决这个问题的猜测是,证明在重力作用下的n体系统是图灵完整的。我怀疑这是考虑到图灵已经完成,并且本质上是在引力(以及其他一些行为类似的力)下运行的,但我不知道如何证明这一点。
但是我怀疑这种方法是否足够,因为我认为有可能(尽管我认为不太可能)缺乏对n体问题的解析通用解可以独立于图灵完成而已。
编辑:阅读了其他一些与切线相关的问题后,我意识到重力作用所在的维数可能与该问题有关。我是专门问3个空间维度上的重力。但是,鉴于这样的事实,例如,您至少需要3条规则才能制造通用图灵机,并且2维的重力将只有一个反定律而不是一个平方反比定律∝ 1 / r 2,导致没有封闭的轨道,我可以看到,三个维度的引力是图灵完成的,而不是两个或一个。