感谢最大流量最小割定理,我们知道我们可以使用任何算法来计算网络图中的最大流量来计算最小割。因此,计算最小 -cut的复杂度不超过计算最大 -flow 的复杂度。
会更少吗?是否有一种算法可以计算出比任何最大流量算法都快的最小切割?
我试图找到一种减少方法,以将)-最大流量问题减少为 -min-cut问题,但我找不到。我的第一个想法是使用分治法:首先找到一个最小割,将图形分为两部分;现在,递归地找到左侧部分的最大流和右侧部分的最大流,并将它们与穿过切口的所有边合并在一起。这确实可以产生最大流量,但是最坏的运行时间可能是最小切割算法运行时间的倍。有更好的减少方法吗?
我意识到最大流量最小割定理表明,计算最大流量值的复杂度与计算最小割容量的复杂度相同,但这不是我要问的。我要问的是找到一个最大流量和一个最小切割(显式)的问题。
这与从最小切割计算最大流量非常相关,除了:(1)我愿意允许Cook减少(Turning减少),而不仅仅是Karp减少(多对减少),以及(2)也许在给定我们可以找到一些图,使得的最小使计算的最大流变得容易,这在另一个问题之外。