对于大多数人来说,图形着色问题已经足够困难。即便如此,我还是要困难一些,并要问有关超图着色的问题。
题。
有什么有效的算法可以找到k均匀超图的近似最佳边缘着色?
细节 - -
一个k一致的超图是一个其中每个边精确包含k个顶点的超图。简单图的通常情况是k = 2。更准确地说,我对标记的 k统一超图感兴趣,在该图中,两个边实际上可能具有相同的顶点集;但是我会在k正则超图上解决某些问题,其边缘相交处不超过k-1个顶点。
超图的边缘着色是与图的情况相同颜色的边缘不相交的边缘着色。通常,色度指标χ'(H)是所需的最少颜色数。
我想要确定性或随机多项式时间算法的结果。
我正在寻找可以有效找到的值与实际色度指标χ'(H)之间的最著名的近似因数/相加间隙-或就此而言,就参数而言,最有效获得的最佳结果例如最大顶点度Δ(H),超图的大小等。
编辑:由Suresh的约低于超图对偶言论引起,我要指出,这个问题就相当于找到一个问题强顶点着色一的K-正规超图:那就是,每个顶点属于k个不同的边缘,[但边缘现在可能包含不同数量的顶点],并且我们希望为顶点着色,以使任意两个相邻的顶点具有不同的颜色。这种重新制定似乎也没有明显的解决方案。
备注
在图的情况下,Vizing定理不仅保证图G的边色数为Δ(G)或Δ(G)+1,它的标准证明还为找到Δ(G )+1边缘着色。如果我对k = 2的情况感兴趣,那么这个结果对我来说已经足够了;但是,我对k> 2任意感兴趣。
关于超图边着色的边界似乎没有任何众所周知的结果,除非您添加了限制,例如每个边最多相交于t个顶点。但是我不需要χ'(H)本身的界限。只是找到“足够好”边缘着色的算法。[我也不想对我的超图施加任何限制,除了是k均匀的,而且可能限制最大顶点度,例如对于某些f∈ω(1)的Δ(H)≤f(k)。 。]
[ 附录。我现在已经在MathOverlow上问了一个有关色数边界(相长或非相乘)的相关问题。]