噪声运算符的扩展


16

在我当前正在解决的一个问题中,噪声运算符的扩展自然而然地出现了,我很好奇是否已经进行了先前的工作。首先让我修改的基本噪声操作Tε真实值的布尔函数。给定的函数f:{0,1}nRεp ST 0ε1ε=12p,我们定义TεRTεf(x)=Eyμp[f(x+y)]

μp是在分配y通过设置的每个位而获得n位矢量为1独立地以概率p0否则。同样,我们可以将这个过程视为以独立的概率 p翻转每一位。现在,这个噪声运营商具有许多有用的特性,包括作为乘法 Ť ε 1 Ť ε 2 = Ť ε 1 ε 2和具有很好的特征向量( Ť εχ 小号xpTε1Tε2=Tε1ε2其中 χ 小号属于奇偶基础)。Tε(χS)=ε|S|χSχS

现在让我定义我延伸,这是我表示为[R p 1p 2[R p 1p 2[R由下式给出[R p 1p 2 ˚F X = È ý μ p X [ ˚F X + Ý ]。但是这里我们的分布μTεR(p1,p2)R(p1,p2)RR(p1,p2)f(x)=Eyμp,x[f(x+y)]是这样的,我们的翻转1个的比特X0的概率为 p 10的比特X1的概率为 p 2。( μ p X是现在显然分布依赖于X其中函数进行评估,并且如果 p 1 = p 2,然后 - [R p 1p 2降低到“常规”噪声操作者)。μp,x1x0p10x1p2μp,xxp1=p2R(p1,p2)

我想知道,这个运算符已经在文献中被很好地研究过?还是它的基本特性显而易见?我只是从布尔分析开始,所以对比我更熟悉该理论的人可能很简单。我特别感兴趣的是,特征向量和特征值是否具有很好的特征,或者是否存在任何可乘性。R(p1,p2)

Answers:


14

我将回答问题的第二部分。

I.特征值和特征函数

我们首先考虑一维情况。很容易检查算子R p 1p 2具有两个本征函数:1ξ x = p 1 + p 2x - p 1 = { p 1 如果  x = 0 p 2 如果  x = 1 ,特征值1n=1Rp1,p21

ξ(x)=(p1+p2)xp1={p1, if x=0,p2, if x=1.
11p1p2

现在考虑一般情况。对于,让ξ 小号X = Π 小号 ξ X 。观察到,ξ 小号是本征函数[R p 1p 2。实际上,由于所有变量x i是独立的,因此我们有 R p 1p 2ξ x S{1,,n}ξS(x)=iSξ(xi)ξSRp1,p2xi

Rp1,p2(ξ(x))=Rp1,p2(iSξ(xi))=iSRp1,p2(ξ(xi))=iS((1p1p2)ξ(xi))=(1p1p2)|S|ξS(x).

我们得到是的本征函数[R p 1p 2与特征值1 - p 1 - p 2 | S | 对于每个小号{ 1 ... ñ }。由于函数ξ 小号X 跨度的整个空间,- [R p 1p 2ξS(x)Rp1,p2(1p1p2)|S|S{1,,n}ξS(x)Rp1,p2没有其他的本征函数(不属于的线性组合)。ξS(x)

二。乘性

一般而言,“乘法属性”不保持自的eigenbasis - [R p 1p 2取决于p 1p 2。但是,我们有 - [R 2 p 1p 2 = - [R p ' 1p ' 2 其中p ' 1 = 2 p 1 - p 1 + pRp1,p2Rp1,p2p1p2

Rp1,p22=Rp1,p2,
p ' 2 = 2 p 2 - p 1个 + p 2p 2。为了验证,首先注意 - [R p 1p 2 - [R p ' 1p ' 2具有相同的组的本征函数 { ξ 小号 }。我们有, - [R 2 p 1p 2ξ 小号p1=2p1(p1+p2)p1p2=2p2(p1+p2)p2Rp1,p2Rp1,p2{ξS}
Rp1,p22(ξS)=(1p1p2)2|S|ξS=(1p1p2)|S|ξS=Rp1,p2(ξS)
1p1p2=1p1(2(p1+p2))p2(2(p1+p2))=1(p1+p+2)(2(p1+p2))=12(p1+p2)+(p1+p2)2=(1p1p2)2.

III. Relation to the Bonami—Beckner operator

Let us think of functions from {0,1}n to R as polylinear polynomials. Let δ=12p1p2p1+p2. Consider the operator

Aδ(f)=f(x1+δ,,xn+δ).
It maps every multilinear polynomial f to a multilinear polynomial A[f]. We have,
Rp1,p2(f)=Aδ1TεAδ(f),
where ε=1p1p2. Note that parts I and II follow from this formula and properties of the Bonami—Beckner operator.

Yury, thank you for the answer! That's a good starting point for me to work with; I should now be able to work out if there are analogues of the hyper contractive inequality. Will post back here if I get any more interesting analysis.
Amir

This is very long after the fact, but I am curious how you derived the third part and the relation to the Becker Bonami operator?
阿米尔(Amir)2013年

(a) It is sufficient to check the identity for f=1 and f=xi. If it holds for 1 and xi, then it's easy to see that it holds for all characters. By linearity, it holds for all functions. (b) Alternatively, from I, Tε and Rp1,p2 have the same set of eigenvalues; eigenvector iSxi of T “corresponds” to eigenvector iSξ(xi) of R. Thus R(f)=A1TA(f) where A is a linear map that maps ξ(x) to x.
Yury

3

We were eventually able to analyze hypercontractive properties of Rp1,p2 (http://arxiv.org/abs/1404.1191), building off of the main Fourier analysis of Rp,0 by Ahlberg, Broman, Griffiths and Morris (http://arxiv.org/abs/1108.0310).

To summarize, the effect of a biased operator Rp,0 on a function f can be analyzed as a symmetric noise operator in a biased measure space. This gives a weak form of hypercontractivity, which depends on how the 2 norm of f varies when switching to a choice of biased measure μ dependent on p.


You might want to 'accept' this answer so that the question doesn't keep popping up (disclaimer: I am an author on the linked paper)
Suresh Venkat
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.