首先,我认为最好使用的连续分数并对其收敛进行测试,因为在那个收敛处,在某种意义上存在一些点是最佳近似值。之后,很明显,需要至少使用广义连续分数来确保具有单调递减的距离。
此后,使用这种复杂的算法,以下蛮力算法在Pari / GP中甚至更快log(a)/log(b)(x,y)
\\ print X,Y,d conditional X>lowboundX, Y > lowboundY, d<upperboundD
{pri1(lbX,lbY,ubd,a,b,X,Y,d)=if(X<lbX || Y<lbY || abs(d)>ubd,return(0));
print(a,"^",X,"-",b,"^",Y,"=",d)); }
{mylist(maxa=19,maxb=99,lbX=3,lbY=2,ubd=100)=print(" ");
for(a=2,maxa,for(b=a+1,maxb,
if(gcd(a,b)>1,next()); \\ ignore trivial multiples
X=1;Y=1;Xa=a;Yb=b;
d=Xa-Yb; pri1(lbX,lbY,ubd,a,b,X,Y,d);
for(k=1,20,
while(d<0,Xa*=a;d=Xa-Yb;X++;pri1(lbX,lbY,ubd,a,b,X,Y,d););
while(d>0,Nb*=b;d=Xa-Yb;Y++;pri1(lbX,lbY,ubd,a,b,X,Y,d););
if(X>30 || Y>20, break()); \\ stop at max X=30 or Y=20
);
)); }
在此之后,mylist(100,1000,3,3,100)
查找与所有细微差别 ,其中对于所有底数,两个指数均至少为和。仅检查和。 |d|<1003a=2..100b=(a+1)..1000max(X)=30max(y)=20
这比连续分数方法要快得多(后者也有更多不友好的问题(例如解决方案的完整性),这些问题很难处理),尽管这是一种幼稚的算法……
协议(手动订购):
gettime();mylist(200,10 000,3,3,100);gettime() /1000.0 \\ ~ a*b/6000 sec
(400 sec)
2^8- 3^5= 13
6^7-23^4= 95
2^7- 3^4= 47
2^7- 5^3= 3
2^5- 3^3= 5
3^4- 4^3= 17
---------------
2^6- 3^4=-17
3^5- 4^4=-13
2^5- 3^4=-49
2^8- 7^3=-87
(4^4- 7^3=-87)
3^7-13^3=-10
2^6- 5^3=-61
(4^3- 5^3=-61)
2^5- 5^3=-93
2^4- 3^3=-11
3^4- 5^3=-44
6^4-11^3=-35
15^4-37^3=-28
3^3- 4^3=-37
3^3- 5^3=-98
5^3- 6^3=-91