Answers:
通常,施里弗(Schrijver)提供了很好的历史渊源。您可以查看以下书籍和文章。
大多数人都将Euler 1741年的“柯尼斯堡斯堡桥”作为最古老的图形算法。不幸的是,Euler实际上并没有详细描述他的算法,而只是举了一个半心半意的例子:
“当确定可以进行这样的旅程时,仍然必须找到应该如何安排的旅程。为此,我使用以下规则:从脑海中去除那些从一个区域通向另一区域的桥对,从而大大减少了桥的数量;然后,通过其余桥梁构建所需的路线是一项容易的任务。经过一番思考后,就会清楚地知道,拆除的桥梁不会显着改变找到的路线。因此,我认为没有必要进一步提供有关路线寻找的详细信息。”
一个完全证明所有偶数连通的图都有欧拉环游的第一个完整证据显然是一个多世纪后的Heirholzer所致。
莱昂哈德·欧拉(Leonhard Euler)。解决问题的方法。《科学评论评论》 Petropolitanae 8:128–140,1741年。于1735年8月26日提交给圣彼得堡学院。转载于Opera Omnia 1(7):1-10。
卡尔·希尔霍尔泽 您可以在此工作,也可以在Ohne Wiederholung和ohne Unterbrechnung zu umfahren之间找到联系。安娜玛娜(Mathematische Annalen),1873年6:30–32。