由于convolution layer
介于两者之间,因此我们无法直接从输入层转到最大池。卷积的原因是提取特征。最大合并将对已提取的特征进行下采样。如果您认为由于从大型矩阵直接跳转到最大池化层而缺少某些功能,则可以在两者之间添加更多的卷积层,直到您对尺寸满意为止,然后对其进行最大池化,以便并不过分。
最大池化是缩减采样的一种形式,用于标识最重要的功能。但是也可以使用平均池和其他各种技术。我通常使用文本而不是图像。对我来说,这些值通常并不完全相同。但是,如果它们也是,则不会有太大的区别,因为它只选择了最大的价值。
Wiki非常了解-The intuition is that once a feature has been found, its exact location isn't as important as its rough location relative to other features. The function of the pooling layer is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network, and hence to also control overfitting. It is common to periodically insert a pooling layer in-between successive conv layers in a CNN architecture. The pooling operation provides a form of translation invariance.
The pooling operation provides a form of translation invariance
吗?