我有一个连续变量,在一年中以不定期的间隔进行采样。有些日子每小时的观测不只一次,而另一些日子则没有几天。这使得检测时间序列中的模式特别困难,因为某些月份(例如10月)的采样很高,而另一些则没有。
我的问题是对这个时间序列建模的最佳方法是什么?
- 我相信大多数时间序列分析技术(例如ARMA)都需要固定频率。我可以汇总数据,以获取恒定的样本或选择非常详细的数据子集。使用这两个选项时,我将丢失原始数据集中的某些信息,这些信息可能会揭示不同的模式。
- 除了可以按周期分解系列之外,我还可以将整个数据集提供给模型,并期望它能够拾取模式。例如,我将分类变量中的小时,工作日和月份进行了转换,并尝试了具有良好结果的多元回归(R2 = 0.71)
我的想法是,诸如ANN之类的机器学习技术也可以从不均匀的时间序列中选择这些模式,但是我想知道是否有人尝试过这种方法,并且可以为我提供一些有关在神经网络中表示时间模式的最佳方法的建议。