基于项目的算法
for every item i that u has no preference for yet
for every item j that u has a preference for
compute a similarity s between i and j
add u's preference for j, weighted by s, to a running average
return the top items, ranked by weighted average
基于用户的算法
for every item i that u has no preference for yet
for every other user v that has a preference for i
compute a similarity s between u and v
add v's preference for i, weighted by s, to a running average
return the top items, ranked by weighted average
项目与用户:
1)推荐项根据他们必须处理的项目或用户的数量进行扩展,因此在某些情况下,每种类型的性能都可以比另一种更好
2)与用户之间的相似度相比,项目之间的相似度估计随着时间的推移更可能收敛
3)我们可以计算和缓存融合的相似度,这可以使基于项目的推荐者获得性能优势
4)基于项目的推荐者从用户的首选项目列表开始,因此不需要像基于用户的推荐者那样最近的项目邻域