2
为什么将ReLU用作激活功能?
激活函数用于w * x + b在神经网络的类型的线性输出中引入非线性。 对于激活功能(例如Sigmoid),我能够直观地理解。 我了解ReLU的优势,它可以避免反向传播过程中死亡的神经元。但是,我无法理解为什么ReLU的输出为线性时为什么将其用作激活函数? 如果不引入非线性,激活函数的全部意义就不会被破坏吗?
数据科学专业人员,机器学习专家以及有兴趣了解该领域的人员的问答