卷积神经网络过度拟合。辍学没有帮助
我在玩卷积网络。具体来说,我使用的是kaggle cats-vs-dogs数据集,该数据集包含25000张标记为猫或狗的图像(每张图像12500张)。 我设法在测试集上实现了约85%的分类精度,但是我设定了达到90%的精度的目标。 我的主要问题是过度拟合。它总是以某种方式最终发生(通常在第8-10阶段之后)。我的网络体系结构受到VGG-16的大致启发,更具体地说,我的图像被调整为128x128x3128x128x3128x128x3,然后运行: Convolution 1 128x128x32 (kernel size is 3, strides is 1) Convolution 2 128x128x32 (kernel size is 3, strides is 1) Max pool 1 64x64x32 (kernel size is 2, strides is 2) Convolution 3 64x64x64 (kernel size is 3, strides is 1) Convolution 4 64x64x64 (kernel size …