Questions tagged «neural-network»

人工神经网络(ANN)由“神经元”组成-模仿生物神经元特性的编程结构。神经元之间的一组加权连接允许信息通过网络传播以解决人工智能问题,而无需网络设计人员拥有真实系统的模型。

4
Word2Vec用于命名实体识别
我正在寻找使用Google的word2vec实现来构建命名实体识别系统。我听说具有通过结构的反向传播的递归神经网络非常适合命名实体识别任务,但是我无法为该类型的模型找到像样的实现或像样的教程。因为我使用的是非典型语料库,所以NLTK和类似工具中的标准NER工具的效果非常差,看起来我必须训练自己的系统。 简而言之,有哪些资源可用于解决此类问题?是否有可用的标准递归神经网络实现?




2
如何为PASCAL VOC挑战计算检测任务的mAP?
如何为Pascal VOC排行榜的检测任务计算mAP(平均平均精度)?http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4 那里说-在第11页:http : //homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf 平均精度(AP)。对于VOC2007挑战,使用插值平均精度(Salton和Mcgill 1986)来评估分类和检测。对于给定的任务和类别,从方法的排序输出中计算出精度/召回曲线。召回率定义为排名高于给定等级的所有阳性示例的比例。精确度是高于该等级的所有示例中来自肯定类别的比例。AP汇总了精度/召回曲线的形状,并定义为一组11个等距召回级别[0,0.1,...,1]的平均精度: AP = 1/11 ∑ r∈{0,0.1,...,1} pinterp(r) 通过采用针对相应召回率超过r:的方法测得的最大精度来内插每个召回级别r的精度pinterp(r) = max p(r˜),其中p(r〜)是在召回〜r时测得的精度 有关地图:http://0agr.ru/wiki/index.php/Precision_and_Recall#Average_Precision 这是否意味着: 我们计算精度和召回率: A)对于许多不同的值,IoU > {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}我们计算真/假正/负值 其中True positive = Number_of_detection with IoU > {0, 0.1,..., 1},这里说:/datascience//a/16813/37736然后我们计算: Precision = True positive / (True positive …


3
多重输出回归的神经网络
我有一个包含34个输入列和8个输出列的数据集。 解决问题的一种方法是采用34个输入并为每个输出列建立单独的回归模型。 我想知道是否可以仅使用一种模型(特别是使用神经网络)解决该问题。 我使用了多层感知器,但是它需要多个模型,就像线性回归一样。序列到序列可以可行吗? 我正在使用TensorFlow。我有代码,但我认为了解多层感知器理论所缺少的内容更为重要。 我了解在MLP中,如果您有一个输出节点,它将提供一个输出。如果您有10个输出节点,那么这是一个多类问题。您从10个输出中选择概率最高的类。但是在我的情况下,可以肯定的是,相同的输入将有8个输出。 可以说,对于一组输入,您将获得某物(X,Y,Z)的3D坐标。就像,输入= {1,10,5,7}输出= {1,2,1}。因此,对于相同的输入{1,10,5,7},我需要为X值Y值和Z建立模型。一种解决方案是使用MLP具有3个不同的模型。但是我想看看我是否可以有一个模型。所以我考虑使用seq2seq。因为编码器接受一系列输入,而解码器提供一系列输出。但是似乎张量流中的seq2seq无法处理浮点值。我对此可能是错的。

4
梯度下降是否总是收敛到最佳状态?
我想知道是否存在梯度下降不会收敛到最小的情况。 我知道,梯度下降并不能始终保证收敛到全局最优值。我也知道,如果步长太大,它可能会偏离最佳值。但是,在我看来,如果它偏离某个最佳值,那么它将最终达到另一个最佳值。 因此,将保证梯度下降收敛到局部或全局最优。那正确吗?如果没有,您能否提供一个粗略的反例?

4
如何获得keras模型的准确性,F1,准确性和召回率?
我想为我的二进制KerasClassifier模型计算精度,召回率和F1分数,但找不到任何解决方案。 这是我的实际代码: # Split dataset in train and test data X_train, X_test, Y_train, Y_test = train_test_split(normalized_X, Y, test_size=0.3, random_state=seed) # Build the model model = Sequential() model.add(Dense(23, input_dim=45, kernel_initializer='normal', activation='relu')) model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) tensorboard = TensorBoard(log_dir="logs/{}".format(time.time())) time_callback = TimeHistory() # Fit the model history …


3
使用深度学习库从文本中提取关键字/短语
也许这太广泛了,但是我正在寻找有关如何在文本摘要任务中使用深度学习的参考。 我已经使用标准的词频方法和句子排序来实现文本摘要,但是我想探索使用深度学习技术来完成此任务的可能性。我还通过使用卷积神经网络(CNN)进行情感分析,在wildml.com上进行了一些实现;我想知道如何使用TensorFlow或Theano等库进行文本汇总和关键字提取。自从我开始尝试神经网络以来已经过去了大约一周的时间,我非常高兴地看到这些库的性能与我以前解决此问题的方法相比如何。 我特别在寻找一些有趣的论文和与使用这些框架进行文本汇总有关的github项目。谁能提供一些参考资料给我?


2
为什么将ReLU用作激活功能?
激活函数用于w * x + b在神经网络的类型的线性输出中引入非线性。 对于激活功能(例如Sigmoid),我能够直观地理解。 我了解ReLU的优势,它可以避免反向传播过程中死亡的神经元。但是,我无法理解为什么ReLU的输出为线性时为什么将其用作激活函数? 如果不引入非线性,激活函数的全部意义就不会被破坏吗?

4
“ LSTM单元中的单位数”是什么意思?
来自Tensorflow代码:Tensorflow。RnnCell。 num_units: int, The number of units in the LSTM cell. 无法理解这是什么意思。LSTM电池的单位是什么。输入,输出和忘记门?这是否表示“深度LSTM的循环投影层中的单位数”。那么为什么将其称为“ LSTM单元中的单位数”?什么是LSTM单元,与VS LSTM块的区别是什么?如果不是单元,最小LSTM单位是什么?

1
如何决定神经网络架构?
我想知道如何确定隐藏层中有多少个节点,以及在构建神经网络体系结构时要放置多少个隐藏层。 我了解输入和输出层取决于我们拥有的训练集,但是总体上我们如何确定隐藏层和整体体系结构?

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.