经过一些试验,我发现可以在MapReduce的基础上构建排名函数,前提是结果集可以适合最大文档大小。
例如,假设我有一个这样的集合:
{ player: "joe", points: 1000, foo: 10, bar: 20, bang: "some text" }
{ player: "susan", points: 2000, foo: 10, bar: 20, bang: "some text" }
{ player: "joe", points: 1500, foo: 10, bar: 20, bang: "some text" }
{ player: "ben", points: 500, foo: 10, bar: 20, bang: "some text" }
...
我可以像这样执行DENSE_RANK的大致等效:
var m = function() { 
  ++g_counter; 
  if ((this.player == "joe") && (g_scores.length != g_fake_limit)) { 
    g_scores.push({
      player: this.player, 
      points: this.points, 
      foo: this.foo,
      bar: this.bar,
      bang: this.bang,
      rank: g_counter
    });   
  }
  if (g_counter == g_final)
  {
    emit(this._id, g_counter);
  }
}}
var r = function (k, v) { }
var f = function(k, v) { return g_scores; }
var test_mapreduce = function (limit) {
  var total_scores = db.scores.count();
  return db.scores.mapReduce(m, r, {
    out: { inline: 1 }, 
    sort: { points: -1 }, 
    finalize: f, 
    limit: total_scores, 
    verbose: true,
    scope: {
      g_counter: 0, 
      g_final: total_scores, 
      g_fake_limit: limit, 
      g_scores:[]
    }
  }).results[0].value;
}
为了进行比较,这是其他地方提到的“幼稚”方法:
var test_naive = function(limit) {
  var cursor = db.scores.find({player: "joe"}).limit(limit).sort({points: -1});
  var scores = [];
  cursor.forEach(function(score) {
    score.rank = db.scores.count({points: {"$gt": score.points}}) + 1;
    scores.push(score);
  });
  return scores;
}
我使用以下代码在MongoDB 1.8.2的单个实例上对这两种方法进行了基准测试:
var rand = function(max) {
  return Math.floor(Math.random() * max);
}
var create_score = function() {
  var names = ["joe", "ben", "susan", "kevin", "lucy"]
  return { player: names[rand(names.length)], points: rand(1000000), foo: 10, bar: 20, bang: "some kind of example text"};
}
var init_collection = function(total_records) {
  db.scores.drop();
  for (var i = 0; i != total_records; ++i) {
    db.scores.insert(create_score());
  }
  db.scores.createIndex({points: -1})
}
var benchmark = function(test, count, limit) {
  init_collection(count);
  var durations = [];
  for (var i = 0; i != 5; ++i) {
    var start = new Date;
    result = test(limit)
    var stop = new Date;
    durations.push(stop - start);
  }
  db.scores.drop();
  return durations;
}
尽管MapReduce的速度比我预期的要快,但幼稚的方法却使它大失所望,尤其是在缓存预热后:
> benchmark(test_naive, 1000, 50);
[ 22, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 1000, 50);
[ 16, 15, 14, 11, 14 ]
> 
> benchmark(test_naive, 10000, 50);
[ 56, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 10000, 50);
[ 154, 109, 116, 109, 109 ]
> 
> benchmark(test_naive, 100000, 50);
[ 492, 15, 18, 17, 16 ]
> benchmark(test_mapreduce, 100000, 50);
[ 1595, 1071, 1099, 1108, 1070 ]
> 
> benchmark(test_naive, 1000000, 50);
[ 6600, 16, 15, 16, 24 ]
> benchmark(test_mapreduce, 1000000, 50);
[ 17405, 10725, 10768, 10779, 11113 ]
因此,目前看来,天真的方法是可行的方法,尽管随着MongoDB团队继续改善MapReduce性能,我会感兴趣的是看看今年晚些时候情况是否会改变。