如果查询在逻辑上相似,为什么计划会有所不同?


19

我编写了两个函数来回答《七周》中“七个数据库”中第3天的第一个作业问题。

创建一个存储过程,您可以在其中输入自己喜欢的电影标题或演员的名字,它将根据演员出演的电影或类似类型的电影返回前五个建议。

我的第一次尝试是正确的但很慢。返回结果最多可能需要2000毫秒。

CREATE OR REPLACE FUNCTION suggest_movies(IN query text, IN result_limit integer DEFAULT 5)
  RETURNS TABLE(movie_id integer, title text) AS
$BODY$
WITH suggestions AS (

  SELECT
    actors.name AS entity_term,
    movies.movie_id AS suggestion_id,
    movies.title AS suggestion_title,
    1 AS rank
  FROM actors
  INNER JOIN movies_actors ON (actors.actor_id = movies_actors.actor_id)
  INNER JOIN movies ON (movies.movie_id = movies_actors.movie_id)

  UNION ALL

  SELECT
    searches.title AS entity_term,
    suggestions.movie_id AS suggestion_id,
    suggestions.title AS suggestion_title,
    RANK() OVER (PARTITION BY searches.movie_id ORDER BY cube_distance(searches.genre, suggestions.genre)) AS rank
  FROM movies AS searches
  INNER JOIN movies AS suggestions ON
    (searches.movie_id <> suggestions.movie_id) AND
    (cube_enlarge(searches.genre, 2, 18) @> suggestions.genre)
)
SELECT suggestion_id, suggestion_title
FROM suggestions
WHERE entity_term = query
ORDER BY rank, suggestion_id
LIMIT result_limit;
$BODY$
LANGUAGE sql;

我的第二次尝试是正确和快速的。我通过将过滤器从CTE向下推到联合的每个部分中来对其进行了优化。

我从外部查询中删除了这一行:

WHERE entity_term = query

我将此行添加到第一个内部查询中:

WHERE actors.name = query

我将此行添加到第二个内部查询中:

WHERE movies.title = query

第二个函数大约需要10毫秒才能返回相同的结果。

除了功能定义外,数据库中没有任何不同。

PostgreSQL为什么对这两个逻辑上等效的查询产生如此不同的计划?

EXPLAIN ANALYZE一个功能的计划如下所示:

                                                                                       Limit  (cost=7774.18..7774.19 rows=5 width=44) (actual time=1738.566..1738.567 rows=5 loops=1)
   CTE suggestions
     ->  Append  (cost=332.56..7337.19 rows=19350 width=285) (actual time=7.113..1577.823 rows=383024 loops=1)
           ->  Subquery Scan on "*SELECT* 1"  (cost=332.56..996.80 rows=11168 width=33) (actual time=7.113..22.258 rows=11168 loops=1)
                 ->  Hash Join  (cost=332.56..885.12 rows=11168 width=33) (actual time=7.110..19.850 rows=11168 loops=1)
                       Hash Cond: (movies_actors.movie_id = movies.movie_id)
                       ->  Hash Join  (cost=143.19..514.27 rows=11168 width=18) (actual time=4.326..11.938 rows=11168 loops=1)
                             Hash Cond: (movies_actors.actor_id = actors.actor_id)
                             ->  Seq Scan on movies_actors  (cost=0.00..161.68 rows=11168 width=8) (actual time=0.013..1.648 rows=11168 loops=1)
                             ->  Hash  (cost=80.86..80.86 rows=4986 width=18) (actual time=4.296..4.296 rows=4986 loops=1)
                                   Buckets: 1024  Batches: 1  Memory Usage: 252kB
                                   ->  Seq Scan on actors  (cost=0.00..80.86 rows=4986 width=18) (actual time=0.009..1.681 rows=4986 loops=1)
                       ->  Hash  (cost=153.61..153.61 rows=2861 width=19) (actual time=2.768..2.768 rows=2861 loops=1)
                             Buckets: 1024  Batches: 1  Memory Usage: 146kB
                             ->  Seq Scan on movies  (cost=0.00..153.61 rows=2861 width=19) (actual time=0.003..1.197 rows=2861 loops=1)
           ->  Subquery Scan on "*SELECT* 2"  (cost=6074.48..6340.40 rows=8182 width=630) (actual time=1231.324..1528.188 rows=371856 loops=1)
                 ->  WindowAgg  (cost=6074.48..6258.58 rows=8182 width=630) (actual time=1231.324..1492.106 rows=371856 loops=1)
                       ->  Sort  (cost=6074.48..6094.94 rows=8182 width=630) (actual time=1231.307..1282.550 rows=371856 loops=1)
                             Sort Key: searches.movie_id, (cube_distance(searches.genre, suggestions_1.genre))
                             Sort Method: external sort  Disk: 21584kB
                             ->  Nested Loop  (cost=0.27..3246.72 rows=8182 width=630) (actual time=0.047..909.096 rows=371856 loops=1)
                                   ->  Seq Scan on movies searches  (cost=0.00..153.61 rows=2861 width=315) (actual time=0.003..0.676 rows=2861 loops=1)
                                   ->  Index Scan using movies_genres_cube on movies suggestions_1  (cost=0.27..1.05 rows=3 width=315) (actual time=0.016..0.277 rows=130 loops=2861)
                                         Index Cond: (cube_enlarge(searches.genre, 2::double precision, 18) @> genre)
                                         Filter: (searches.movie_id <> movie_id)
                                         Rows Removed by Filter: 1
   ->  Sort  (cost=436.99..437.23 rows=97 width=44) (actual time=1738.565..1738.566 rows=5 loops=1)
         Sort Key: suggestions.rank, suggestions.suggestion_id
         Sort Method: top-N heapsort  Memory: 25kB
         ->  CTE Scan on suggestions  (cost=0.00..435.38 rows=97 width=44) (actual time=1281.905..1738.531 rows=43 loops=1)
               Filter: (entity_term = 'Die Hard'::text)
               Rows Removed by Filter: 382981
 Total runtime: 1746.623 ms

EXPLAIN ANALYZE第二个查询的计划如下所示:

 Limit  (cost=43.74..43.76 rows=5 width=44) (actual time=1.231..1.234 rows=5 loops=1)
   CTE suggestions
     ->  Append  (cost=4.86..43.58 rows=5 width=391) (actual time=1.029..1.141 rows=43 loops=1)
           ->  Subquery Scan on "*SELECT* 1"  (cost=4.86..20.18 rows=2 width=33) (actual time=0.047..0.047 rows=0 loops=1)
                 ->  Nested Loop  (cost=4.86..20.16 rows=2 width=33) (actual time=0.047..0.047 rows=0 loops=1)
                       ->  Nested Loop  (cost=4.58..19.45 rows=2 width=18) (actual time=0.045..0.045 rows=0 loops=1)
                             ->  Index Scan using actors_name on actors  (cost=0.28..8.30 rows=1 width=18) (actual time=0.045..0.045 rows=0 loops=1)
                                   Index Cond: (name = 'Die Hard'::text)
                             ->  Bitmap Heap Scan on movies_actors  (cost=4.30..11.13 rows=2 width=8) (never executed)
                                   Recheck Cond: (actor_id = actors.actor_id)
                                   ->  Bitmap Index Scan on movies_actors_actor_id  (cost=0.00..4.30 rows=2 width=0) (never executed)
                                         Index Cond: (actor_id = actors.actor_id)
                       ->  Index Scan using movies_pkey on movies  (cost=0.28..0.35 rows=1 width=19) (never executed)
                             Index Cond: (movie_id = movies_actors.movie_id)
           ->  Subquery Scan on "*SELECT* 2"  (cost=23.31..23.40 rows=3 width=630) (actual time=0.982..1.081 rows=43 loops=1)
                 ->  WindowAgg  (cost=23.31..23.37 rows=3 width=630) (actual time=0.982..1.064 rows=43 loops=1)
                       ->  Sort  (cost=23.31..23.31 rows=3 width=630) (actual time=0.963..0.971 rows=43 loops=1)
                             Sort Key: searches.movie_id, (cube_distance(searches.genre, suggestions_1.genre))
                             Sort Method: quicksort  Memory: 28kB
                             ->  Nested Loop  (cost=4.58..23.28 rows=3 width=630) (actual time=0.808..0.916 rows=43 loops=1)
                                   ->  Index Scan using movies_title on movies searches  (cost=0.28..8.30 rows=1 width=315) (actual time=0.025..0.027 rows=1 loops=1)
                                         Index Cond: (title = 'Die Hard'::text)
                                   ->  Bitmap Heap Scan on movies suggestions_1  (cost=4.30..14.95 rows=3 width=315) (actual time=0.775..0.844 rows=43 loops=1)
                                         Recheck Cond: (cube_enlarge(searches.genre, 2::double precision, 18) @> genre)
                                         Filter: (searches.movie_id <> movie_id)
                                         Rows Removed by Filter: 1
                                         ->  Bitmap Index Scan on movies_genres_cube  (cost=0.00..4.29 rows=3 width=0) (actual time=0.750..0.750 rows=44 loops=1)
                                               Index Cond: (cube_enlarge(searches.genre, 2::double precision, 18) @> genre)
   ->  Sort  (cost=0.16..0.17 rows=5 width=44) (actual time=1.230..1.231 rows=5 loops=1)
         Sort Key: suggestions.rank, suggestions.suggestion_id
         Sort Method: top-N heapsort  Memory: 25kB
         ->  CTE Scan on suggestions  (cost=0.00..0.10 rows=5 width=44) (actual time=1.034..1.187 rows=43 loops=1)
 Total runtime: 1.410 ms

Answers:


21

CTE没有自动谓词下推

PostgreSQL 9.3没有为CTE 进行谓词下推

具有谓词下推功能的优化器可以将where子句移动到内部查询中。目标是尽早过滤掉不相关的数据。只要新查询在逻辑上是等效的,引擎仍会获取所有相关数据,因此只会更快地产生正确的结果。

核心开发人员Tom Lane提到了在pgsql-performance邮件列表上确定逻辑等效性的困难。

CTE也被视为优化围栏;这并不是优化程序的限制,而是在CTE包含可写查询时保持语义的健全。

优化器不会区分只读CTE和可写CTE,因此在考虑计划时过于保守。“围栏”处理阻止了优化器在CTE中移动where子句,尽管我们可以看到这样做是安全的。

我们可以等待PostgreSQL团队改善CTE优化,但是就目前而言,要获得良好的性能,您必须更改您的书写风格。

重写以提高性能

问题已经显示出一种获得更好计划的方法。复制过滤条件本质上是硬编码谓词下推的效果。

在这两个计划中,引擎都将结果行复制到工作表中,以便对其进行排序。工作表越大,查询速度越慢。

第一个计划将基本表中的所有行复制到工作表,然后进行扫描以查找结果。为了使事情变得更慢,引擎必须扫描整个工作表,因为它没有索引。

那是不必要的工作。当基本表中估计的19350行中只有估计的5个匹配行时,它将两次读取基本表中的所有数据以找到答案。

第二个计划使用索引查找匹配的行,然后将这些行仅复制到工作表中。该索引为我们有效地过滤了数据。

在SQL艺术的第85页上,StéphaneFaroult提醒我们用户的期望。

最终用户在很大程度上会根据他们期望的行数来调整他们的耐心:当他们要一根针时,他们很少注意草垛的大小。

第二个计划随针而行,因此更有可能让您的用户满意。

重写以实现可维护性

新查询很难维护,因为您可以通过更改一个过滤器名称而不是另一个过滤器名称来引入缺陷。

如果我们可以只编写一次并且仍然获得良好的性能,那不是很好吗?

我们可以。优化器确实为子查询确定下推。

一个简单的例子更容易解释。

CREATE TABLE a (c INT);

CREATE TABLE b (c INT);

CREATE INDEX a_c ON a(c);

CREATE INDEX b_c ON b(c);

INSERT INTO a SELECT 1 FROM generate_series(1, 1000000);

INSERT INTO b SELECT 2 FROM a;

INSERT INTO a SELECT 3;

这将创建两个表,每个表都有一个索引列。它们加在一起包含一百万1秒,一百万2秒和一个3

您可以3使用这两个查询中的任何一个找到针。

-- CTE
EXPLAIN ANALYZE
WITH cte AS (
  SELECT c FROM a
  UNION ALL
  SELECT c FROM b
)
SELECT c FROM cte WHERE c = 3;

-- Subquery
EXPLAIN ANALYZE
SELECT c
FROM (
  SELECT c FROM a
  UNION ALL
  SELECT c FROM b
) AS subquery
WHERE c = 3;

CTE的计划很慢。该引擎扫描三个表并读取大约四百万行。大约需要1000毫秒。

CTE Scan on cte  (cost=33275.00..78275.00 rows=10000 width=4) (actual time=471.412..943.225 rows=1 loops=1)
  Filter: (c = 3)
  Rows Removed by Filter: 2000000
  CTE cte
    ->  Append  (cost=0.00..33275.00 rows=2000000 width=4) (actual time=0.011..409.573 rows=2000001 loops=1)
          ->  Seq Scan on a  (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.010..114.869 rows=1000001 loops=1)
          ->  Seq Scan on b  (cost=0.00..18850.00 rows=1000000 width=4) (actual time=5.530..104.674 rows=1000000 loops=1)
Total runtime: 948.594 ms

子查询的计划很快。引擎只查找每个索引。花费不到一毫秒的时间。

Append  (cost=0.42..8.88 rows=2 width=4) (actual time=0.021..0.038 rows=1 loops=1)
  ->  Index Only Scan using a_c on a  (cost=0.42..4.44 rows=1 width=4) (actual time=0.020..0.021 rows=1 loops=1)
        Index Cond: (c = 3)
        Heap Fetches: 1
  ->  Index Only Scan using b_c on b  (cost=0.42..4.44 rows=1 width=4) (actual time=0.016..0.016 rows=0 loops=1)
        Index Cond: (c = 3)
        Heap Fetches: 0
Total runtime: 0.065 ms

有关交互式版本,请参见SQLFiddle


0

这些计划与Postgres 12中的相同

该问题询问有关Postgres 9.3的问题。五年后,该版本已过时,但发生了什么变化?

PostgreSQL 12现在可以内联这样的CTE。

内联WITH查询(公用表表达式)

如果通用表表达式(又名WITH查询)现在可以自动内联到查询中,如果它们a)不是递归的,b)没有任何副作用,c)在查询的后面仅被引用一次。这消除了自WITHPostgreSQL 8.4中引入该子句以来就存在的“优化围栏”

如果需要,您可以使用MATERIALIZED子句强制执行WITH查询,例如

WITH c AS MATERIALIZED ( SELECT * FROM a WHERE a.x % 4 = 0 ) SELECT * FROM c JOIN d ON d.y = a.x;
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.