Answers:
为了检查您的请求,我按照以下方案创建了2个表:
第一个称为的表heap
在该字段上获得了非聚集索引group
。调用的第二个表在调用clust
的顺序字段上获得了聚集索引,在该字段上获得key
了非聚集索引group
测试在具有2个超线程内核,4Gb内存和64位Windows 7的I5 M540处理器上运行。
Microsoft SQL Server 2008 R2 (RTM) - 10.50.1600.1 (X64)
Apr 2 2010 15:48:46
Developer Edition (64-bit) on Windows NT 6.1 <X64> (Build 7601: Service Pack 1)
2011年3月9日更新:通过运行以下.net代码并在Sql Server Profiler中记录持续时间,CPU,读取,写入和RowCounts,我进行了第二次更广泛的基准测试。(使用的CommandText将在结果中提及。)
注意: CPU和持续时间以毫秒表示
- 1000个查询
- 从结果中消除零个CPU查询
- 从结果中消除了受影响的0行
int[] idList = new int[] { 6816588, 7086702, 6498815 ... }; // 1000 values here.
using (var conn = new SqlConnection(@"Data Source=myserver;Initial Catalog=mydb;Integrated Security=SSPI;"))
{
conn.Open();
using (var cmd = new SqlCommand())
{
cmd.Connection = conn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = "select * from heap where common_key between @id and @id+1000";
cmd.Parameters.Add("@id", SqlDbType.Int);
cmd.Prepare();
foreach (int id in idList)
{
cmd.Parameters[0].Value = id;
using (var reader = cmd.ExecuteReader())
{
int count = 0;
while (reader.Read())
{
count++;
}
Console.WriteLine(String.Format("key: {0} => {1} rows", id, count));
}
}
}
}
更新于2011年3月9日结束。
为了检查性能编号,我在堆表上一次在集群表上执行了以下查询:
select * from heap/clust where group between 5678910 and 5679410
select * from heap/clust where group between 6234567 and 6234967
select * from heap/clust where group between 6455429 and 6455729
select * from heap/clust where group between 6655429 and 6655729
select * from heap/clust where group between 6955429 and 6955729
select * from heap/clust where group between 7195542 and 7155729
该基准测试的结果适用于heap
:
rows reads CPU Elapsed
----- ----- ----- --------
1503 1510 31ms 309ms
401 405 15ms 283ms
2700 2709 0ms 472ms
0 3 0ms 30ms
2953 2962 32ms 257ms
0 0 0ms 0ms
2011年3月9日更新:
cmd.CommandText = "select * from heap where group between @id and @id+1000";
- 721行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1001 69788 6368 -
Cpu 15 374 37 0.00754
Reads 1069 91459 7682 1.20155
Writes 0 0 0 0.00000
Duration 0.3716 282.4850 10.3672 0.00180
更新于2011年3月9日结束。
该表clust
的结果是:
rows reads CPU Elapsed
----- ----- ----- --------
1503 4827 31ms 327ms
401 1241 0ms 242ms
2700 8372 0ms 410ms
0 3 0ms 0ms
2953 9060 47ms 213ms
0 0 0ms 0ms
2011年3月9日更新:
cmd.CommandText = "select * from clust where group between @id and @id+1000";
- 721行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1001 69788 6056 -
Cpu 15 468 38 0.00782
Reads 3194 227018 20457 3.37618
Writes 0 0 0 0.0
Duration 0.3949 159.6223 11.5699 0.00214
更新于2011年3月9日结束。
cmd.CommandText = "select * from heap/clust h join keys k on h.group = k.group where h.group between @id and @id+1000";
该基准测试的结果适用于heap
:
873行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1009 4170 1683 -
Cpu 15 47 18 0.01175
Reads 2145 5518 2867 1.79246
Writes 0 0 0 0.00000
Duration 0.8215 131.9583 1.9095 0.00123
该基准测试的结果适用于clust
:
865行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1000 4143 1685 -
Cpu 15 47 18 0.01193
Reads 5320 18690 8237 4.97813
Writes 0 0 0 0.00000
Duration 0.9699 20.3217 1.7934 0.00109
第二批查询是更新语句:
update heap/clust set amount = amount + 0 where group between 5678910 and 5679410
update heap/clust set amount = amount + 0 where group between 6234567 and 6234967
update heap/clust set amount = amount + 0 where group between 6455429 and 6455729
update heap/clust set amount = amount + 0 where group between 6655429 and 6655729
update heap/clust set amount = amount + 0 where group between 6955429 and 6955729
update heap/clust set amount = amount + 0 where group between 7195542 and 7155729
此基准的结果为heap
:
rows reads CPU Elapsed
----- ----- ----- --------
1503 3013 31ms 175ms
401 806 0ms 22ms
2700 5409 47ms 100ms
0 3 0ms 0ms
2953 5915 31ms 88ms
0 0 0ms 0ms
2011年3月9日更新:
cmd.CommandText = "update heap set amount = amount + @id where group between @id and @id+1000";
- 811行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1001 69788 5598 811
Cpu 15 873 56 0.01199
Reads 2080 167593 11809 2.11217
Writes 0 1687 121 0.02170
Duration 0.6705 514.5347 17.2041 0.00344
更新于2011年3月9日结束。
此基准的结果为clust
:
rows reads CPU Elapsed
----- ----- ----- --------
1503 9126 16ms 35ms
401 2444 0ms 4ms
2700 16385 31ms 54ms
0 3 0ms 0ms
2953 17919 31ms 35ms
0 0 0ms 0ms
2011年3月9日更新:
cmd.CommandText = "update clust set amount = amount + @id where group between @id and @id+1000";
- 853行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1001 69788 5420 -
Cpu 15 594 50 0.01073
Reads 6226 432237 33597 6.20450
Writes 0 1730 110 0.01971
Duration 0.9134 193.7685 8.2919 0.00155
更新于2011年3月9日结束。
我运行的第三批查询是delete语句
delete heap/clust where group between 5678910 and 5679410
delete heap/clust where group between 6234567 and 6234967
delete heap/clust where group between 6455429 and 6455729
delete heap/clust where group between 6655429 and 6655729
delete heap/clust where group between 6955429 and 6955729
delete heap/clust where group between 7195542 and 7155729
此基准测试结果heap
:
rows reads CPU Elapsed
----- ----- ----- --------
1503 10630 62ms 179ms
401 2838 0ms 26ms
2700 19077 47ms 87ms
0 4 0ms 0ms
2953 20865 62ms 196ms
0 4 0ms 9ms
2011年3月9日更新:
cmd.CommandText = "delete heap where group between @id and @id+1000";
- 724行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 192 69788 4781 -
Cpu 15 499 45 0.01247
Reads 841 307958 20987 4.37880
Writes 2 1819 127 0.02648
Duration 0.3775 1534.3383 17.2412 0.00349
更新于2011年3月9日结束。
此基准测试结果clust
:
rows reads CPU Elapsed
----- ----- ----- --------
1503 9228 16ms 55ms
401 3681 0ms 50ms
2700 24644 46ms 79ms
0 3 0ms 0ms
2953 26955 47ms 92ms
0 3 0ms 0ms
2011年3月9日更新:
cmd.CommandText = "delete clust where group between @id and @id+1000";
- 751行的CPU> 0,并且影响超过0行
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 144 69788 4648 -
Cpu 15 764 56 0.01538
Reads 989 458467 30207 6.48490
Writes 2 1830 127 0.02694
Duration 0.2938 2512.1968 24.3714 0.00555
更新于2011年3月9日结束。
基准测试的最后一部分是执行插入语句。
插入堆/簇(...)值(...),(...),(...),(...),(...),(...)
此基准测试结果heap
:
rows reads CPU Elapsed
----- ----- ----- --------
6 38 0ms 31ms
2011年3月9日更新:
string str = @"insert into heap (group, currency, year, period, domain_id, mtdAmount, mtdAmount, ytdAmount, amount, ytd_restated, restated, auditDate, auditUser)
values";
for (int x = 0; x < 999; x++)
{
str += string.Format(@"(@id + {0}, 'EUR', 2012, 2, 0, 100, 100, 1000 + @id,1000, 1000,1000, current_timestamp, 'test'), ", x);
}
str += string.Format(@"(@id, 'CAD', 2012, 2, 0, 100, 100, 1000 + @id,1000, 1000,1000, current_timestamp, 'test') ", 1000);
cmd.CommandText = str;
- 912个语句的CPU> 0
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1000 1000 1000 -
Cpu 15 2138 25 0.02500
Reads 5212 7069 6328 6.32837
Writes 16 34 22 0.02222
Duration 1.6336 293.2132 4.4009 0.00440
更新于2011年3月9日结束。
此基准测试结果clust
:
rows reads CPU Elapsed
----- ----- ----- --------
6 50 0ms 18ms
2011年3月9日更新:
string str = @"insert into clust (group, currency, year, period, domain_id, mtdAmount, mtdAmount, ytdAmount, amount, ytd_restated, restated, auditDate, auditUser)
values";
for (int x = 0; x < 999; x++)
{
str += string.Format(@"(@id + {0}, 'EUR', 2012, 2, 0, 100, 100, 1000 + @id,1000, 1000,1000, current_timestamp, 'test'), ", x);
}
str += string.Format(@"(@id, 'CAD', 2012, 2, 0, 100, 100, 1000 + @id,1000, 1000,1000, current_timestamp, 'test') ", 1000);
cmd.CommandText = str;
- 946条语句的CPU> 0
Counter Minimum Maximum Average Weighted
--------- ------- ---------- ------- ---------
RowCounts 1000 1000 1000 -
Cpu 15 2403 21 0.02157
Reads 6810 8997 8412 8.41223
Writes 16 25 19 0.01942
Duration 1.5375 268.2571 6.1463 0.00614
更新于2011年3月9日结束。
尽管在使用聚集索引和非聚集索引访问表时(使用非聚集索引时)进行的逻辑读取更多,但性能结果为:
当然,我的基准测试在特定类型的表上非常有限,并且查询集非常有限,但是我认为基于这些信息,我们已经可以开始说在表上创建聚簇索引实际上总是更好。
2011年3月9日更新:
从增加的结果可以看出,有限测试的结论在每种情况下都不正确。
现在的结果表明,从聚集索引中受益的唯一语句是更新语句。在具有聚集索引的表上,其他语句的速度要慢大约30%。
在一些其他图表中,我绘制了每个查询相对于堆还是集群的加权持续时间。
如您所见,insert语句的性能配置文件非常有趣。尖峰是由一些数据点引起的,需要花费更长的时间才能完成。
更新于2011年3月9日结束。
正如金伯利·特里普(Kimberly Tripp)(索引之王)在她的博客文章《聚集索引辩论》中继续很好地解释...,在数据库表上具有聚集键几乎可以加快所有操作的速度,而不仅是SELECT
。
只要选择一个好的集群键(如),SELECT相对于集群表通常在堆上速度较慢INT IDENTITY
。如果您使用非常糟糕的群集密钥(例如GUID或具有很多可变长度组件的复合密钥),那么(只有这样)堆可能会更快。但是在那种情况下,您真的首先需要清理数据库设计...
因此,总的来说,我认为堆中没有任何意义-选择一个好的,有用的群集密钥,您应该在各个方面都受益。
碰巧碰到Joe Chang的这篇文章,它解决了这个问题。在下面粘贴他的结论。
考虑一个表,索引的深度为4,因此有一个根级别,2个中间级别和叶级别。索引查找单个索引键(即不查找键)将生成4个逻辑IO(LIO)。现在考虑是否需要密钥查找。如果表具有深度也为4的聚簇索引,则每个键查找都会生成4个LIO。如果表是堆,则每个键查找都会生成1个LIO。实际上,对堆的键查询要比对聚簇索引的键查询便宜约20-30%,而不是接近4:1的LIO比率。