我有函数:
我发现其补函数为:
我必须证明: 但我看不到该怎么做。
似乎没有什么可以抵消彼此的。
编辑
如所建议的,我现在使用了德摩根定理并发现了这一点:
但是在我看来,没有什么可以使我更接近的实现。
我有函数:
我发现其补函数为:
我必须证明: 但我看不到该怎么做。
似乎没有什么可以抵消彼此的。
编辑
如所建议的,我现在使用了德摩根定理并发现了这一点:
但是在我看来,没有什么可以使我更接近的实现。
Answers:
自从卡尔问得很好。起点:
对执行以下步骤:
我的答案与Dave Tweed的答案相似,这意味着我将其放在了较为正式的水平。我显然稍后会回答,但是我还是决定发布它,因为有人可能会发现这种方法很有趣。
您试图证明的关系独立于函数的结构,因为事实上它是一个重言式。要解释一下我的意思是,我提出了一个普通,正常形成,布尔表达式示范布尔变量的任意数,说,,其中对于所有。
我们有那个,并考虑为以下两组布尔值的维布尔矢量
All good answers that provide the necessary justification in one way or the other. Since it is a tautology, it's hard to create a proof that doesn't just result in "it is what it is!". Perhaps this method help tackle it from yet another, broader angle:
Expand both statements to include their redundant cases, and the remove the repeated cases:
and
I've kept the terms in consistent order to make the derivation more obvious, but they could be written alphabetically to be clearer. In any case, the point is that ORs seven 4-bit cases, and ORs nine, distinct 4-bit cases. Together they OR all sixteen 4-bit cases, so reduce to .
F + F' = 1 means that you have to show that no matter the state of the 4 inputs, OR'ing the result of those 2 always result in 1,
A few minutes in excel shows it is indeed the case. You can use "NOT()" to invert between 0 and 1 in excel.
F = W * X + Y * Z
F' = W' * Y' + W' * Z' + X' * Y' + X' * Z'
As to why this is the case, If you want F to be false, e.g. setting W and Y low, you just made F' true. If you make X and Z low, you also made F" true, same for swapping there pairs.