耦合偏微分方程组的解


1

我有耦合偏微分方程的以下系统。Maple如何解决该系统? 22ù2

m12u1t2+A14u1(x,t)x4+k(u1u2)=F1(t)δ(xx1),
m22u2t2A22u2(x,t)x2+k(u2u1)=F2(t)δ(xx2).

在此, 和是常数,其中而是Dirac Delta函数。 边界条件: ķ = 1 2 δAi,mi,xiki=1,2δ

u1(0,t)=2u1x2(0,t)=u1(l,t)=2u1x2(l,t)=0

u2(0,t)=u2(l,t)=0

初始条件:

ui(x,0)=wi0(x),

uix(x,0)=yi0(x),其中i=1,2.

由于和是未指定的(未指定)函数,因此我们寻求的解将取决于 和。F 2t u 1u 2 F 1t F 2t F1(t)F2(t)u1,u2F1(t)F2(t)

枫木代码:

PDE1:=m1*diff(u1(x,t),t$2)+A1*diff(u1(x,t),x$4)+k*(u1(x,t)-u2(x,t))=F1(t)*delta(x-x1);
PDE2:=m2*diff(u2(x,t),t$2)-A2*diff(u2(x,t),x$2)+k*(u2(x,t)-u1(x,t))=F2(t)*delta(x-x2);

到目前为止,您如何在Maple中对其进行编程?
太阳迈克

2
这个问题与工程无关,应该与数学有关
山葵
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.