我有一个桌子的设计,我不想只是猜测它有多强,但我找不到解释如何弄清楚所涉及的所有力量不假设我已经知道关于工程已经很多了。
所以,如果我直接在桌子的前角应用300lbf(1334牛顿),我怎样才能计算从桌面到直立梁,对角支撑,到地面的压力?
假设A500钢,1x2x16ga。
我有一个桌子的设计,我不想只是猜测它有多强,但我找不到解释如何弄清楚所涉及的所有力量不假设我已经知道关于工程已经很多了。
所以,如果我直接在桌子的前角应用300lbf(1334牛顿),我怎样才能计算从桌面到直立梁,对角支撑,到地面的压力?
假设A500钢,1x2x16ga。
Answers:
首先,我假设你的每个水平表面:桌面和三个自我都是相同的材料。使用一个荒谬和夸张的情况下,如果桌面左侧不是重型大理石而右侧不是轻质轻木。桌面由一种均匀的材料组成,每个都由自己的均匀材料制成:木材,玻璃,金属,刨花板和laminex,胶合板等等。
如图所示,每个搁架和桌面独立地连接到用作腿的垂直支撑件。因此,每个水平表面的重量直接传递到垂直支撑。所有水平表面都是均匀的材料,具有均匀的重量分布。因此,每条腿承载所有水平表面的总重量的一半。
每条腿的部分经历其上方的全部重量是两个三角形支架之间的短部分:一个用于桌面,另一个用于桌子的支架/脚。
腿的这些短节中的每一个的应力将是每条腿承受的重量除以腿在z平面中的横截面积(宽度与腿的宽度)
桌面支架的倾斜部分将承载桌面的一些重量。然而,桌面支架的短垂直部分承载桌面上方垂直支撑的所有重量,三个搁架和桌面的一些重量。携带的桌面重量的比例将取决于垂直支撑的垂直(正常)距离。
同样在腿的底部,三角形支撑将根据您的三角形配置重新分配脚中的负载。
这只是如何思考与您的设计相关的事情的一般概述。正如@Rick Teachey所说,你真的需要做一个静力学课程,获得重量和支撑的横截面尺寸的数字,并将它们全部插入到一些公式中。
既然您想知道应用于桌角的负载会发生什么,我将把这个问题简化为两个维度,假设该角落的腿部仅抵抗负载。考虑到钢构件的刚度比木制桌面的刚度大几个数量级的事实,这可能与事实并不太远。
我还要假设桌子是由不具有自重的魔法材料制成的,桌子上没有其他负载,只是为了保持简单。而且,正如其他人所提到的,如果没有静态知识,这实际上是不可能做到的。我不能在这里给出一个完整的教训,但我会尽我所能地解释事情。
您实际拥有的结构如下(移除脚后的桌子的尾端,这是无关紧要的,脚底部的对角线,这只会使问题复杂化并且实际上不会改变相关的内部应力):
这个特殊情况实际上可以手工解决,所以这里说:表格边缘的负载是,距对角线是。这意味着梁必须承受的弯矩和剪切力等于的施加载荷(负值,因为它指向下)。
现在我们处于对角线开始帮助水平梁的位置,因此我们需要计算出每个力的力量。为此,我们必须先看一下,注意水平梁在另一个钉扎接头处与柱子相遇(图中的那些“球”)。这些关节允许零件相对于彼此旋转,这(这是您在静力学中学到的)意味着该点处的弯矩为零。由于沿着那些没有应用其他外部载荷(在水平杆与对角线和柱子的连接之间),剪切力必须沿着该拉伸是恒定的。并且由于剪切力是弯矩的导数,因此力矩必须线性变化。并且由于对角线被固定(“球”连接)到水平,它没有任何时刻偷走。这意味着水平光束从对角线开始处的弯矩300变为列处的零点。因此,沿该拉伸的恒定剪切力等于该线性变化的正切,即
因此,回到水平和对角线之间的连接,我们现在知道水平光束从剪切力变为。这意味着对角线必须在水平方向上施加等于的垂直力。但是,由于对角线固定在两端并且没有施加外部载荷,因此它只能包含轴向载荷。这意味着那些实际上只是对角线实际应用的力的一个组成部分。切线可以很容易地找到水平分量,等于。对角线上的总轴向力可以通过Pythogoras找到:,并且是压缩的。同时,该力的水平分量必须受到水平梁的约束,因此水平梁的张力为。
现在剩下的就是专栏了。由于水平梁受到的张力,因此需要被柱吸收,这将张力转换为的剪切。然而,该剪切通过与对角线的连接而抵消,该对角线施加相同的力(但是在不同的侧面上,因此具有不同的符号...... 静力学)。然而,在这些点之间,剪切是有效的。在有剪切的地方,有弯矩。超过的恒定剪切产生的弯曲力矩1920 磅1920 磅5 在1920 ⋅ 5。在柱的底部和对角线的连接之间,不再有任何剪切,因此力矩是恒定的。
此外,水平梁的剪切力为,它作为相等值的轴向张力传递到柱子(柱子的那部分被拉伸,而不是压扁!)。然而,在与对角线连接之后,它也会转移其水平分量(它在顶部是正的,因为它指向。在这里它指向下方,所以它是负的)。因此,在基座和对角线之间,柱受到的压缩,这是有意义的,因为柱的那部分必须承受施加在工作台边缘的整个外部载荷。如果它的压缩不等于所施加的负载,那么就会出错。- 480 磅300 磅
但是,了解内部力量并不足以知道您的办公桌是否会支持它。然而,这在很大程度上取决于你居住的地方和适用的代码(我确信办公桌不必遵循结构代码,但我确定有一些相关的代码)并且在这里无法得到充分的回答。
话虽这么说,对于张力和剪切,它通常没什么神秘感。对于张力,将拉力除以横截面积,并将该应力与钢的强度(最弱的A500为45ksi)进行比较,并考虑一些安全系数(允许的应力设计通常使用钢的强度的60%)。对于剪切,将剪切力除以“剪切面积”,在您的情况下,剪切面积等于横截面“垂直”侧面的面积。这给出了剪切应力,应该与钢的强度进行比较(允许的应力设计使用40%的抗拉强度)。
然而,弯曲和压缩由于存在弯曲的风险而更复杂,并且需要通过相关代码来完成。如果一个人忽略屈曲(一个人真的不应该),那么这只是获得相关压力并将其与力量再次相比较的问题。对于压缩,这与张力相同。对于弯曲,将弯矩除以弹性模量以获得最大拉伸/压缩应力(见下文),并与允许应力进行比较:
并且,对于它的价值,脚底部的对角线可能与屈曲分析有关,但是如果我不得不猜测我会说帮助水平梁的上对角线将成为控制构件(用于屈曲)。
你要求的是静力学分析,或者是工程师在“材料力学”课程中学到的东西。您需要知道由于300磅的力以及是否能够承受负载而对桌面构件施加了多大的压力。
我已经解决了桌面上横梁支撑的这个问题。但是,当负载直接位于支撑构件上方时,将在支撑构件上看到最高负载,而不是在负载结束时。
可以对其余成员进行分析,但要进行全面分析,您需要查看连接点,因为那些可能是阻塞点。
上面链接的文档是在我正在开发的名为CADWOLF的平台上完成的。您可以更改负载以查看产生的力。
您描述的负载结果是支撑桌面的横梁上的负载为74.49 lbf,桌面连接腿部的反作用力为274.5 lbf。
该文件描述了总结力和力矩以获得这些结果的过程。该相同的过程可以与横梁上的载荷和反作用力一起使用,以计算将垂直腿连接到下水平腿的横梁上的载荷。