MIMO(多输入多输出)系统解耦方法


9

许多文章和书中都描述了具有2输入2输出解耦方法的MIMO系统与SISO系统。如何m * n个大小传递函数系统?我们如何将这种方法推广到例如3 * 3或3 * 7 MIMO系统?

这是2 * 2 MIMO系统的描述:

到窗体D11(s)=D22(s)=1

D(s)=[D11(s)D12(s)D21(s)>D22(s)]

在这里,我们用公式中的结构指定一个解耦响应和一个解耦器

Gp(s)D(s)=[G11(s)00G22(s)>][G11(s)G12(s)G21(s)>G22(s)][1D12(s)D21(s)1>]>=[G11(s)00G22(s)]

我们可以求解四个未知数中的四个方程

D12(s)=G12(s)G11(s)D21(s)=>G21(s)G22(s)Gl1(s)=G11(s)=G12(s)G21(s)G22(s)Gl2(s)=G22(s)=G21(s)G12(s)G11(s)

您可能需要查看网络分析和综合教科书,例如Kuo或Brian DO Anderson和Sumeth Vongpanitlerd。如今,这不是一门学得太多的学科。
我的另一个头

我认为您正在寻找状态空间表格。
leCrazyEngineer

对数学stackexchange可能有助于此主题math.stackexchange.com/questions/1297659/...
乔斯

Answers:


1

nm

x˙=f(x)+g1(x)u1++gm(x)um
y1=h1(x),,ym=hm(x)

hff

Lfh(x)=hxf(x)
LgLf=(Lfh)xg(x)Lf2h(x)=LfLfh(x)=(Lfh)xf(x)Lfkh(x)=LfLfk1h(x)=(Lfk1)xf(x)

i

y˙i=Lfhi(x)+Lg1hi(x)u1+Lgmhi(x)um
x
(Lg1hi(x),,Lgmhi(x))(0,,0)
iki=1

ki

(Lg,Lfki1hi(x),,LgmLfki1hi(x))(0,,0)
x

u(x)=A1(x)N(x)+A1(x)v
A(x)N(x)v
A(x)=(Lg1Lfk11h1(x)LgmLfk11h1Lg1Lfkm1hm(x)LgmLFkm1hm),N(x)=(Lfk1h1(x)Lfkmhm(x))

A(x)x

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.