如何计算旋转/倾斜矩形的角位置/标记?


17

我有两个元素,一个2D点和一个矩形区域。该点表示该区域的中间。我也知道该区域的宽度和高度。并且该区域相对于网格倾斜40°。

现在,我只想使用此数据来计算该倾斜区域的每个角标记的绝对位置。那可能吗?

Answers:


30
X = x*cos(θ) - y*sin(θ)
Y = x*sin(θ) + y*cos(θ)

这将为您提供绕原点旋转θ度的点的位置。由于正方形的角围绕正方形的中心而不是原点旋转,因此需要添加几个步骤才能使用此公式。首先,您需要设置相对于原点的点。然后,您可以使用旋转公式。旋转后,您需要将其相对于正方形的中心向后移动。

// cx, cy - center of square coordinates
// x, y - coordinates of a corner point of the square
// theta is the angle of rotation

// translate point to origin
float tempX = x - cx;
float tempY = y - cy;

// now apply rotation
float rotatedX = tempX*cos(theta) - tempY*sin(theta);
float rotatedY = tempX*sin(theta) + tempY*cos(theta);

// translate back
x = rotatedX + cx;
y = rotatedY + cy;

将其应用到所有4个角,就完成了!


4

通过平移到以枢轴为原点的坐标系,然后绕此原点旋转,然后平移回世界坐标,来绕枢轴旋转点是一种常见的技术。(可汗学院提供了这种方法的很好的解释)

但是,您并未将矩形角存储在世界坐标中,因此我们可以定制一种方法来适合您现有的数据。

Cx, Cy // the coordinates of your center point in world coordinates
W      // the width of your rectangle
H      // the height of your rectangle
θ      // the angle you wish to rotate

//The offset of a corner in local coordinates (i.e. relative to the pivot point)
//(which corner will depend on the coordinate reference system used in your environment)
Ox = W / 2
Oy = H / 2

//The rotated position of this corner in world coordinates    
Rx = Cx + (Ox  * cos(θ)) - (Oy * sin(θ))
Ry = Cy + (Ox  * sin(θ)) + (Oy * cos(θ))

然后可以轻松地将此方法应用于其他三个角落。


2

基于其他答案,并对其进行补充,我设法在此处使用P5创建了一个示例。

这是代码,以防您要直接访问它:

function setup() {
createCanvas(400, 400);
}

var count = 0;

function draw() {
  background(250);
  rectMode(CENTER);
  stroke(0,0,255);
  fill(0,0,255);
  count += 1;

  var box1X = 100;
  var box1Y = 100;
  var box2X = 160;
  var box2Y = 100;
  var box1R = count;
  var box2R = -60-count;
  var box1W = 50;
  var box1H = 50;
  var box2W = 50;
  var box2H = 50;

  translate(box1X, box1Y);
  rotate(radians(box1R));
  rect(0, 0, box1W, box1H);
  rotate(radians(-box1R));
  translate(-box1X, -box1Y);

  translate(box2X, box2Y);
  rotate(radians(box2R));
  rect(0, 0, box2W, box2H);
  rotate(radians(-box2R));
  translate(-box2X, -box2Y);

  stroke(255,0,0);
  fill(255,0,0);

  var pointRotated = [];
  pointRotated.push(GetPointRotated(box1X, box1Y, box1R, -box1W/2, box1H/2));  // Dot1
  pointRotated.push(GetPointRotated(box1X, box1Y, box1R, box1W/2, box1H/2));   // Dot2
  pointRotated.push(GetPointRotated(box1X, box1Y, box1R, -box1W/2, -box1H/2)); // Dot3
  pointRotated.push(GetPointRotated(box1X, box1Y, box1R, box1W/2, -box1H/2));  // Dot4
  pointRotated.push(createVector(box1X, box1Y)); // Dot5

  for (var i=0;i<pointRotated.length;i++){
ellipse(pointRotated[i].x,pointRotated[i].y,3,3);
  }
}

function GetPointRotated(X, Y, R, Xos, Yos){
// Xos, Yos // the coordinates of your center point of rect
// R      // the angle you wish to rotate

//The rotated position of this corner in world coordinates    
var rotatedX = X + (Xos  * cos(radians(R))) - (Yos * sin(radians(R)))
var rotatedY = Y + (Xos  * sin(radians(R))) + (Yos * cos(radians(R)))

return createVector(rotatedX, rotatedY)
}
<script src="//cdnjs.cloudflare.com/ajax/libs/p5.js/0.3.3/p5.min.js"></script>


1

重构上面的代码会得到一个清理的表格,该表格还强调了一个简单的事实,即每个角基本上是,每个角都有center + height/2 + width/2适当的符号。如果将height/2width/2视为旋转向量,这也适用。

相信解释器可以内联帮助者,这应该非常有效,如果我们尝试以此为基准。

function addPoints(p1, p2) {
    return { x: p1.x + p2.x, y: p1.y + p2.y }
}

function subPoints(p1, p2 ) {
    return { x: p1.x - p2.x, y: p1.y - p2.y }
}

function multPoints(p1, p2 ) {
    return { x: p1.x * p2.x, y: p1.y * p2.y }
}

function getRulerCorners() {
    const sin = Math.sin(ruler.angle);
    const cos = Math.cos(ruler.angle);
    const height = { x: sin * ruler.height/2, y: cos * ruler.height/2 };
    const heightUp = addPoints(ruler, multPoints({x: 1, y :-1}, height));
    const heightDown = addPoints(ruler, multPoints({x: -1, y: 1}, height));
    const width = { x: cos * ruler.width/2, y: sin * ruler.width/2 };
    ruler.nw = subPoints(heightUp, width);
    ruler.ne = addPoints(heightUp, width );
    ruler.sw = subPoints(heightDown, width);
    ruler.se = addPoints(heightDown, width);
}

0

请参阅有关旋转的Wikipedia文章。本质是这样的:

(1)如果c为中心点,则角为c +(L / 2,W / 2),+/-等,其中LW是矩形的长度和宽度。

(2)通过从所有四个角中减去c来平移矩形,以使中心c为原点。

(3)通过引用的三角公式将矩形旋转40度。

(4)通过在每个坐标上加上c来回移。


感谢您的回答,但我恐怕不明白。如果未知,我应该如何从角落(未知)中减去中心(已知)?我的意思是,这些角的坐标正是我要找出的东西。
堆积

我试图澄清。
约瑟夫·奥洛克

0

可以通过将问题分成两个来进行一些优化:

  • 计算顶部和底部的中心,即中心+旋转高度/ 2。
  • 使用旋转的宽度/ 2计算相对于这些中心点的角
  • 一劳永逸地计算实际的正弦和余弦。

下面的代码,此处的矩形称为标尺。Ruler.x,Ruler,y是矩形的中心。

/** Middle point on rulers's top side. */
function getRulerTopMiddle(cos, sin) {
    return {
        x : ruler.x + sin * ruler.height/2,
        y : ruler.y - cos * ruler.height/2
    }
 }

/** Middle point on rulers's bottom side. */
function getRulerBottomMiddle(cos, sin) {
    return {
        x : ruler.x - sin * ruler.height/2,
        y : ruler.y + cos * ruler.height/2
    }
 }

/** Update ruler's four corner coordinates. */
function getRulerCorners() {
    const sin = Math.sin(ruler.angle);
    const cos = Math.cos(ruler.angle);
    const topMiddle = getRulerTopMiddle(cos, sin);
    const bottomMiddle = getRulerBottomMiddle(cos, sin);

    ruler.nw = {
        x: topMiddle.x - (cos * ruler.width/2),
        y: topMiddle.y - (sin * ruler.width/2)
    }   
    ruler.ne = {
        x: topMiddle.x + (cos * ruler.width/2),
        y: topMiddle.y + (sin * ruler.width/2)
    }   
    ruler.sw = {
        x: bottomMiddle.x - (cos * ruler.width/2),
        y: bottomMiddle.y - (sin * ruler.width/2)
    }   
    ruler.se = {
        x: bottomMiddle.x + (cos * ruler.width/2),
        y: bottomMiddle.y + (sin * ruler.width/2)
    }
}

0

有点晚了,但这是我使用的紧凑函数。它计算顶部和左侧的点,然后将它们翻转到相对的角。

rotatedRect(float x, float y, float halfWidth, float halfHeight, float angle)
{
    float c = cos(angle);
    float s = sin(angle);
    float r1x = -halfWidth * c - halfHeight * s;
    float r1y = -halfWidth * s + halfHeight * c;
    float r2x =  halfWidth * c - halfHeight * s;
    float r2y =  halfWidth * s + halfHeight * c;

    // Returns four points in clockwise order starting from the top left.
    return
        (x + r1x, y + r1y),
        (x + r2x, y + r2y),
        (x - r1x, y - r1y),
        (x - r2x, y - r2y);
}

0

旧帖子,但这是另一种方法:

public static Point[] GetRotatedCorners(Rectangle rectangleToRotate, float angle)
{

    // Calculate the center of rectangle.
    Point center = new Point(rectangleToRotate.Left + (rectangleToRotate.Left + rectangleToRotate.Right) / 2, rectangleToRotate.Top + (rectangleToRotate.Top + rectangleToRotate.Bottom) / 2);

    Matrix m = new Matrix();
    // Rotate the center.
    m.RotateAt(360.0f - angle, center);

    // Create an array with rectangle's corners, starting with top-left corner and going clock-wise.
    Point[] corners = new Point[]
        {
            new Point(rectangleToRotate.Left, rectangleToRotate.Top), // Top-left corner.
            new Point(rectangleToRotate.Right, rectangleToRotate.Top),    // Top-right corner.
            new Point(rectangleToRotate.Right, rectangleToRotate.Bottom), // Bottom-right corner.
            new Point(rectangleToRotate.Left, rectangleToRotate.Bottom),  // Botton-left corner
        };

    // Now apply the matrix to every corner of the rectangle.
    m.TransformPoints(corners);

    // Return the corners of rectangle rotated by the provided angle.
    return corners;
}

希望能帮助到你!

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.