22 对栅格进行地理配准时可以使用以下几种转换: 一阶多项式(仿射) 二阶多项式 三阶多项式 花键...等 是否有任何特定的规则或经验法则,关于特定栅格应使用哪种变换? 例如,特定的转换通常应与航空照片一起使用,另一转换应与卫星图像一起使用,而第三幅应在对地图进行数字化时使用? 是否有任何书籍详细解释了其背后的数学原理? raster georeferencing — 腾达德瓦塔塔 source
27 最后第一:这是回归分析和统计建模的材料。大多数教科书都讨论了多项式回归。(Draper和Smith在第5章中对此进行了处理。)与Excel将直线拟合为散点图相比,地理配准真的没有什么特别的(数学上):变量更多。(如果您信任Excel,您实际上可以说服Excel对其进行地理配准;-)。 现在来看一些经验法则: 请使用符合您精度要求的最低顺序。(有关更多信息,请参见下面的#7。) 使用可以代表可能发生的变形的方法。使用纸质地图扫描时,变形可能是局部的和不规则的,因此请考虑样条线。随着投影的变化(包括大多数航空和卫星图像处理中发生的变化),使用的正确转换是投影的。投影变换既不是多项式(一般而言)也不是样条曲线。如果您的软件不支持它们,则二阶多项式通常会提供合理的近似值。 不要过拟合。任何地理数据源的准确性都受到限制。您希望均方根近似等于该误差,而不是显着降低。 尤其是在使用更高的幂(多项式为2或更大的多项式)时,请清除外围的链接。即使是单个异常值,也会严重扭曲转换。通过创建一些不用于计算转换的链接并检查转换对它们的解析程度,对结果进行交叉验证。 为了获得最大的精度,请对尽可能小的区域进行地理配准。没有必要对超出您感兴趣的区域进行地理配准,否则可能会恶化研究区域内地图的质量。 为了提高灵活性,可以对更大的区域进行地理配准。或早或晚,您可能需要从相邻区域引入数据:在重叠的边界附近具有一些公共控制点将极大地帮助您。(此规则与前面的规则冲突!) 支持在研究区域边界周围创建控制点。从几何学上讲,您的大部分地区无论如何都位于其边界附近。从统计学上讲,您可以从这些极端控制点获得最佳信息。在内部使用一些用于检查拟合度和评估多项式阶数。(如果仅基于边界点的拟合是可以接受的,但内部点拟合得不好,则可能需要增加多项式的阶数。) — ub source @Devdatta一点也不;我很想看看其他人认为有用的规则。 — ub