ANN(人工神经网络)和SVM(支持向量机)是有监督的机器学习和分类的两种流行策略。哪种方法更适合特定项目通常不是很清楚,我敢肯定答案总是“取决于情况”。通常,将两者与贝叶斯分类一起使用。
关于ANN与SVM的关于Stackoverflow的这些问题已经被提出:
在这个问题中,我想具体了解ANN(特别是多层感知器)的哪些方面可能会使其更适合在SVM上使用?我问的原因是因为很容易回答相反的问题问题:支持向量机通常优于ANN,因为它们避免了ANN的两个主要缺点:
(1)ANN通常会收敛于局部最小值而不是全局最小值,这意味着它们有时本质上是“缺少全局”(或缺少树木的森林)
(2)人工神经网络经常过拟合如果训练时间太长,,这意味着对于任何给定的模式,神经网络可能会开始将噪声视为模式的一部分。
SVM不会遇到这两个问题。然而,将SVM完全替代ANN并不是很容易。那么,与支持向量机相比,人工神经网络具有哪些特定的优势,可能使其适用于某些情况?我已经列出了SVM相对于ANN的特定优势,现在,我希望看到ANN优势的列表(如果有)。