python 2.7的备忘录库


68

我看到python 3.2在functools库中具有作为装饰器的备注。 http://docs.python.org/py3k/library/functools.html#functools.lru_cache

不幸的是,它还没有反向移植到2.7。有什么特定的原因,为什么它在2.7中不可用?是否有任何第三方库提供相同的功能,或者我应该编写自己的库?


没有答案,但我相信Python 3现在已经停止了移植。
jamylak 2012年

2
它声称是2.7兼容版本:code.activestate.com/recipes/…–
Thomas K,

3
@ Thomas Kfunctools32并且repoze.lru在2.7中可用并且运行良好。最好使用标准装饰器,而不是食谱。
smci 2013年

Answers:


42

有什么特定的原因,为什么它在2.7中不可用?

@Nirk已经提供了原因:不幸的是,2.x行仅收到错误修复,并且仅针对3.x开发了新功能。

是否有任何第三方库提供相同的功能?

repoze.lru 是适用于Python 2.6,Python 2.7和Python 3.2的LRU缓存实现。

文档和源代码可在GitHub上获得

简单用法:

from repoze.lru import lru_cache

@lru_cache(maxsize=500)
def fib(n):
    if n < 2:
        return n
    return fib(n-1) + fib(n-2)

2
哪个表现更好:functools32还是repoze.lru
smci 2013年

1
functools32使它在2.7中可用。
Ben Lerner

repoze.lru而且functools32都慢。编写自己的装饰器更快。
丹尼斯,

30

Python 3.2.3中有一个用于Python 2.7PyPyfunctools模块的反向端口functools32

它包括lru_cache装饰器。


哪个表现更好:functools32还是repoze.lru
smci 2013年

1
pylru不做锁。因此,这不是一个公平的比较。
吴永威'18

23

我当时处在同样的情况下,自己被迫实施。python 3.x实现还存在其他一些问题:

  • 主要问题是没有为每个实例启用单独的缓存(如果要缓存的功能是实例方法)。这意味着,如果将最大大小设置为100,并且有100个实例(如果所有实例均处于活动状态),则缓存将无济于事。
    • 另外,如果您运行clear_cache-它会清除所有实例的缓存。
  • 第二个主要问题是,我希望使用超时功能每X秒清除一次缓存。

python 2.7的功能lru_cache实现:

import time
import functools
import collections

def lru_cache(maxsize = 255, timeout = None):
    """lru_cache(maxsize = 255, timeout = None) --> returns a decorator which returns an instance (a descriptor).

        Purpose         - This decorator factory will wrap a function / instance method and will supply a caching mechanism to the function.
                            For every given input params it will store the result in a queue of maxsize size, and will return a cached ret_val
                            if the same parameters are passed.

        Params          - maxsize - int, the cache size limit, anything added above that will delete the first values enterred (FIFO).
                            This size is per instance, thus 1000 instances with maxsize of 255, will contain at max 255K elements.
                        - timeout - int / float / None, every n seconds the cache is deleted, regardless of usage. If None - cache will never be refreshed.

        Notes           - If an instance method is wrapped, each instance will have it's own cache and it's own timeout.
                        - The wrapped function will have a cache_clear variable inserted into it and may be called to clear it's specific cache.
                        - The wrapped function will maintain the original function's docstring and name (wraps)
                        - The type of the wrapped function will no longer be that of a function but either an instance of _LRU_Cache_class or a functool.partial type.

        On Error        - No error handling is done, in case an exception is raised - it will permeate up.
    """

    class _LRU_Cache_class(object):
        def __init__(self, input_func, max_size, timeout):
            self._input_func        = input_func
            self._max_size          = max_size
            self._timeout           = timeout

            # This will store the cache for this function, format - {caller1 : [OrderedDict1, last_refresh_time1], caller2 : [OrderedDict2, last_refresh_time2]}.
            #   In case of an instance method - the caller is the instance, in case called from a regular function - the caller is None.
            self._caches_dict        = {}

        def cache_clear(self, caller = None):
            # Remove the cache for the caller, only if exists:
            if caller in self._caches_dict:
                del self._caches_dict[caller]
                self._caches_dict[caller] = [collections.OrderedDict(), time.time()]

        def __get__(self, obj, objtype):
            """ Called for instance methods """
            return_func = functools.partial(self._cache_wrapper, obj)
            return_func.cache_clear = functools.partial(self.cache_clear, obj)
            # Return the wrapped function and wraps it to maintain the docstring and the name of the original function:
            return functools.wraps(self._input_func)(return_func)

        def __call__(self, *args, **kwargs):
            """ Called for regular functions """
            return self._cache_wrapper(None, *args, **kwargs)
        # Set the cache_clear function in the __call__ operator:
        __call__.cache_clear = cache_clear


        def _cache_wrapper(self, caller, *args, **kwargs):
            # Create a unique key including the types (in order to differentiate between 1 and '1'):
            kwargs_key = "".join(map(lambda x : str(x) + str(type(kwargs[x])) + str(kwargs[x]), sorted(kwargs)))
            key = "".join(map(lambda x : str(type(x)) + str(x) , args)) + kwargs_key

            # Check if caller exists, if not create one:
            if caller not in self._caches_dict:
                self._caches_dict[caller] = [collections.OrderedDict(), time.time()]
            else:
                # Validate in case the refresh time has passed:
                if self._timeout != None:
                    if time.time() - self._caches_dict[caller][1] > self._timeout:
                        self.cache_clear(caller)

            # Check if the key exists, if so - return it:
            cur_caller_cache_dict = self._caches_dict[caller][0]
            if key in cur_caller_cache_dict:
                return cur_caller_cache_dict[key]

            # Validate we didn't exceed the max_size:
            if len(cur_caller_cache_dict) >= self._max_size:
                # Delete the first item in the dict:
                cur_caller_cache_dict.popitem(False)

            # Call the function and store the data in the cache (call it with the caller in case it's an instance function - Ternary condition):
            cur_caller_cache_dict[key] = self._input_func(caller, *args, **kwargs) if caller != None else self._input_func(*args, **kwargs)
            return cur_caller_cache_dict[key]


    # Return the decorator wrapping the class (also wraps the instance to maintain the docstring and the name of the original function):
    return (lambda input_func : functools.wraps(input_func)(_LRU_Cache_class(input_func, maxsize, timeout)))

单元测试代码:

#!/usr/bin/python
# -*- coding: utf-8 -*-
import time
import random
import unittest
import lru_cache

class Test_Decorators(unittest.TestCase):
    def test_decorator_lru_cache(self):
        class LRU_Test(object):
            """class"""
            def __init__(self):
                self.num = 0

            @lru_cache.lru_cache(maxsize = 10, timeout = 3)
            def test_method(self, num):
                """test_method_doc"""
                self.num += num
                return self.num

        @lru_cache.lru_cache(maxsize = 10, timeout = 3)
        def test_func(num):
            """test_func_doc"""
            return num

        @lru_cache.lru_cache(maxsize = 10, timeout = 3)
        def test_func_time(num):
            """test_func_time_doc"""
            return time.time()

        @lru_cache.lru_cache(maxsize = 10, timeout = None)
        def test_func_args(*args, **kwargs):
            return random.randint(1,10000000)



        # Init vars:
        c1 = LRU_Test()
        c2 = LRU_Test()
        m1 = c1.test_method
        m2 = c2.test_method
        f1 = test_func

        # Test basic caching functionality:
        self.assertEqual(m1(1), m1(1)) 
        self.assertEqual(c1.num, 1)     # c1.num now equals 1 - once cached, once real
        self.assertEqual(f1(1), f1(1))

        # Test caching is different between instances - once cached, once not cached:
        self.assertNotEqual(m1(2), m2(2))
        self.assertNotEqual(m1(2), m2(2))

        # Validate the cache_clear funcionality only on one instance:
        prev1 = m1(1)
        prev2 = m2(1)
        prev3 = f1(1)
        m1.cache_clear()
        self.assertNotEqual(m1(1), prev1)
        self.assertEqual(m2(1), prev2)
        self.assertEqual(f1(1), prev3)

        # Validate the docstring and the name are set correctly:
        self.assertEqual(m1.__doc__, "test_method_doc")
        self.assertEqual(f1.__doc__, "test_func_doc")
        self.assertEqual(m1.__name__, "test_method")
        self.assertEqual(f1.__name__, "test_func")

        # Test the limit of the cache, cache size is 10, fill 15 vars, the first 5 will be overwritten for each and the other 5 are untouched. Test that:
        c1.num = 0
        c2.num = 10
        m1.cache_clear()
        m2.cache_clear()
        f1.cache_clear()
        temp_list = map(lambda i : (test_func_time(i), m1(i), m2(i)), range(15))

        for i in range(5, 10):
            self.assertEqual(temp_list[i], (test_func_time(i), m1(i), m2(i)))
        for i in range(0, 5):
            self.assertNotEqual(temp_list[i], (test_func_time(i), m1(i), m2(i)))
        # With the last run the next 5 vars were overwritten, now it should have only 0..4 and 10..14:
        for i in range(5, 10):
            self.assertNotEqual(temp_list[i], (test_func_time(i), m1(i), m2(i)))

        # Test different vars don't collide:
        self.assertNotEqual(test_func_args(1), test_func_args('1'))
        self.assertNotEqual(test_func_args(1.0), test_func_args('1.0'))
        self.assertNotEqual(test_func_args(1.0), test_func_args(1))
        self.assertNotEqual(test_func_args(None), test_func_args('None'))
        self.assertEqual(test_func_args(test_func), test_func_args(test_func))
        self.assertEqual(test_func_args(LRU_Test), test_func_args(LRU_Test))
        self.assertEqual(test_func_args(object), test_func_args(object))
        self.assertNotEqual(test_func_args(1, num = 1), test_func_args(1, num = '1'))
        # Test the sorting of kwargs:
        self.assertEqual(test_func_args(1, aaa = 1, bbb = 2), test_func_args(1, bbb = 2, aaa = 1))
        self.assertNotEqual(test_func_args(1, aaa = '1', bbb = 2), test_func_args(1, bbb = 2, aaa = 1))


        # Sanity validation of values
        c1.num = 0
        c2.num = 10
        m1.cache_clear()
        m2.cache_clear()
        f1.cache_clear()
        self.assertEqual((f1(0), m1(0), m2(0)), (0, 0, 10))
        self.assertEqual((f1(0), m1(0), m2(0)), (0, 0, 10))
        self.assertEqual((f1(1), m1(1), m2(1)), (1, 1, 11))
        self.assertEqual((f1(2), m1(2), m2(2)), (2, 3, 13))
        self.assertEqual((f1(2), m1(2), m2(2)), (2, 3, 13))
        self.assertEqual((f1(3), m1(3), m2(3)), (3, 6, 16))
        self.assertEqual((f1(3), m1(3), m2(3)), (3, 6, 16))
        self.assertEqual((f1(4), m1(4), m2(4)), (4, 10, 20))
        self.assertEqual((f1(4), m1(4), m2(4)), (4, 10, 20))

        # Test timeout - sleep, it should refresh cache, and then check it was cleared:
        prev_time = test_func_time(0)
        self.assertEqual(test_func_time(0), prev_time)
        self.assertEqual(m1(4), 10)
        self.assertEqual(m2(4), 20)
        time.sleep(3.5)
        self.assertNotEqual(test_func_time(0), prev_time)
        self.assertNotEqual(m1(4), 10)
        self.assertNotEqual(m2(4), 20)


if __name__ == '__main__':
    unittest.main()

在整个互联网上,我看到了一些有趣的Python 2实现。也许我们应该将它们放在一起,并称为Python 2.8或2.9
nehem 16-10-18

4
考虑在github上发布...积极维护的存储库比4岁的stackoverflow片段更具吸引力
Jason S

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.