我如何遍历一个元组(使用C ++ 11)?我尝试了以下方法:
for(int i=0; i<std::tuple_size<T...>::value; ++i)
std::get<i>(my_tuple).do_sth();
但这不起作用:
错误1:抱歉,未实现:无法将“侦听器...”扩展为固定长度的参数列表。
错误2:我无法出现在常量表达式中。
那么,如何正确遍历元组的元素?
我如何遍历一个元组(使用C ++ 11)?我尝试了以下方法:
for(int i=0; i<std::tuple_size<T...>::value; ++i)
std::get<i>(my_tuple).do_sth();
但这不起作用:
错误1:抱歉,未实现:无法将“侦听器...”扩展为固定长度的参数列表。
错误2:我无法出现在常量表达式中。
那么,如何正确遍历元组的元素?
Answers:
Boost.Fusion是可能的:
未经测试的示例:
struct DoSomething
{
template<typename T>
void operator()(T& t) const
{
t.do_sth();
}
};
tuple<....> t = ...;
boost::fusion::for_each(t, DoSomething());
我有一个基于遍历元组的答案:
#include <tuple>
#include <utility>
#include <iostream>
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
print(std::tuple<Tp...>& t)
{ }
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
print(std::tuple<Tp...>& t)
{
std::cout << std::get<I>(t) << std::endl;
print<I + 1, Tp...>(t);
}
int
main()
{
typedef std::tuple<int, float, double> T;
T t = std::make_tuple(2, 3.14159F, 2345.678);
print(t);
}
通常的想法是使用编译时间递归。实际上,这种想法被用于制造一种打印安全的类型,如原始元组论文中所述。
可以很容易地将其概括为for_each
for元组:
#include <tuple>
#include <utility>
template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
for_each(std::tuple<Tp...> &, FuncT) // Unused arguments are given no names.
{ }
template<std::size_t I = 0, typename FuncT, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
for_each(std::tuple<Tp...>& t, FuncT f)
{
f(std::get<I>(t));
for_each<I + 1, FuncT, Tp...>(t, f);
}
尽管这需要付出一些努力才能FuncT
用元组可能包含的每种类型来表示具有适当重载的内容。如果您知道所有元组元素将共享一个公共基类或类似的东西,那么这将是最好的方法。
enable_if
文档。
for_each
。实际上,我自己做了。:-)我认为,如果这个答案已经被普遍化的话,它将更加有用。
const std::tuple<Tp...>&
..的版本。如果您不想在迭代时修改元组,则这些const
版本就足够了。
在C ++ 17,可以使用std::apply
与倍的表达:
std::apply([](auto&&... args) {((/* args.dosomething() */), ...);}, the_tuple);
打印元组的完整示例:
#include <tuple>
#include <iostream>
int main()
{
std::tuple t{42, 'a', 4.2}; // Another C++17 feature: class template argument deduction
std::apply([](auto&&... args) {((std::cout << args << '\n'), ...);}, t);
}
该解决方案解决了M. Alaggan答案中的评估顺序问题。
((std::cout << args << '\n'), ...);
什么吗?调用lambda时,将tuple-elements解压缩为args
,但是用双括号括起来又是怎么回事?
((std::cout << arg1 << '\n'), (std::cout << arg2 << '\n'), (std::cout << arg3 << '\n'))
在此处扩展为逗号表达式。
在C ++ 17中,您可以执行以下操作:
std::apply([](auto ...x){std::make_tuple(x.do_something()...);} , the_tuple);
使用std :: experimental :: apply在Clang ++ 3.9中已经可以使用。
do_something()
以未指定的顺序发生,因为参数包是在函数调用中展开的()
,其中参数具有未指定的顺序?那可能非常重要。我想大多数人都希望可以保证该顺序与成员的顺序相同,即作为的索引std::get<>()
。AFAIK,要在这种情况下保证订购,必须在中进行扩展{braces}
。我错了吗?这个答案强调这种排序:stackoverflow.com/a/16387374/2757035
使用Boost.Hana和通用lambda:
#include <tuple>
#include <iostream>
#include <boost/hana.hpp>
#include <boost/hana/ext/std/tuple.hpp>
struct Foo1 {
int foo() const { return 42; }
};
struct Foo2 {
int bar = 0;
int foo() { bar = 24; return bar; }
};
int main() {
using namespace std;
using boost::hana::for_each;
Foo1 foo1;
Foo2 foo2;
for_each(tie(foo1, foo2), [](auto &foo) {
cout << foo.foo() << endl;
});
cout << "foo2.bar after mutation: " << foo2.bar << endl;
}
using namespace boost::fusion
(尤其是与一起using namespace std
)。现在没有办法知道那for_each
是std::for_each
还是boost::fusion::for_each
使用C ++ 17的一种更简单,直观且易于编译的方式,使用if constexpr
:
// prints every element of a tuple
template<size_t I = 0, typename... Tp>
void print(std::tuple<Tp...>& t) {
std::cout << std::get<I>(t) << " ";
// do things
if constexpr(I+1 != sizeof...(Tp))
print<I+1>(t);
}
这是编译时递归,类似于@emsr提出的递归。但这不使用SFINAE,因此(我认为)它对编译器更友好。
您需要使用模板元编程,此处显示为Boost.Tuple:
#include <boost/tuple/tuple.hpp>
#include <iostream>
template <typename T_Tuple, size_t size>
struct print_tuple_helper {
static std::ostream & print( std::ostream & s, const T_Tuple & t ) {
return print_tuple_helper<T_Tuple,size-1>::print( s, t ) << boost::get<size-1>( t );
}
};
template <typename T_Tuple>
struct print_tuple_helper<T_Tuple,0> {
static std::ostream & print( std::ostream & s, const T_Tuple & ) {
return s;
}
};
template <typename T_Tuple>
std::ostream & print_tuple( std::ostream & s, const T_Tuple & t ) {
return print_tuple_helper<T_Tuple,boost::tuples::length<T_Tuple>::value>::print( s, t );
}
int main() {
const boost::tuple<int,char,float,char,double> t( 0, ' ', 2.5f, '\n', 3.1416 );
print_tuple( std::cout, t );
return 0;
}
在C ++ 0x中,您可以print_tuple()
改为编写可变参数模板函数。
首先定义一些索引助手:
template <size_t ...I>
struct index_sequence {};
template <size_t N, size_t ...I>
struct make_index_sequence : public make_index_sequence<N - 1, N - 1, I...> {};
template <size_t ...I>
struct make_index_sequence<0, I...> : public index_sequence<I...> {};
使用您的函数,您想应用到每个元组元素:
template <typename T>
/* ... */ foo(T t) { /* ... */ }
你可以写:
template<typename ...T, size_t ...I>
/* ... */ do_foo_helper(std::tuple<T...> &ts, index_sequence<I...>) {
std::tie(foo(std::get<I>(ts)) ...);
}
template <typename ...T>
/* ... */ do_foo(std::tuple<T...> &ts) {
return do_foo_helper(ts, make_index_sequence<sizeof...(T)>());
}
或者如果foo
返回void
,请使用
std::tie((foo(std::get<I>(ts)), 1) ... );
注意:在C ++ 14 make_index_sequence
上已定义(http://en.cppreference.com/w/cpp/utility/integer_sequence)。
如果您确实需要从左到右的评估顺序,请考虑以下内容:
template <typename T, typename ...R>
void do_foo_iter(T t, R ...r) {
foo(t);
do_foo(r...);
}
void do_foo_iter() {}
template<typename ...T, size_t ...I>
void do_foo_helper(std::tuple<T...> &ts, index_sequence<I...>) {
do_foo_iter(std::get<I>(ts) ...);
}
template <typename ...T>
void do_foo(std::tuple<T...> &ts) {
do_foo_helper(ts, make_index_sequence<sizeof...(T)>());
}
foo
,以避免可能的病理操作符过载。void
operator,
这是一种仅使用标准库即可遍历元组项的简单C ++ 17方法:
#include <tuple> // std::tuple
#include <functional> // std::invoke
template <
size_t Index = 0, // start iteration at 0 index
typename TTuple, // the tuple type
size_t Size =
std::tuple_size_v<
std::remove_reference_t<TTuple>>, // tuple size
typename TCallable, // the callable to bo invoked for each tuple item
typename... TArgs // other arguments to be passed to the callable
>
void for_each(TTuple&& tuple, TCallable&& callable, TArgs&&... args)
{
if constexpr (Index < Size)
{
std::invoke(callable, args..., std::get<Index>(tuple));
if constexpr (Index + 1 < Size)
for_each<Index + 1>(
std::forward<TTuple>(tuple),
std::forward<TCallable>(callable),
std::forward<TArgs>(args)...);
}
}
例:
#include <iostream>
int main()
{
std::tuple<int, char> items{1, 'a'};
for_each(items, [](const auto& item) {
std::cout << item << "\n";
});
}
输出:
1
a
这可以扩展为在可调用对象返回值的情况下有条件地打破循环(但仍可用于不返回布尔可分配值的可调用对象,例如void):
#include <tuple> // std::tuple
#include <functional> // std::invoke
template <
size_t Index = 0, // start iteration at 0 index
typename TTuple, // the tuple type
size_t Size =
std::tuple_size_v<
std::remove_reference_t<TTuple>>, // tuple size
typename TCallable, // the callable to bo invoked for each tuple item
typename... TArgs // other arguments to be passed to the callable
>
void for_each(TTuple&& tuple, TCallable&& callable, TArgs&&... args)
{
if constexpr (Index < Size)
{
if constexpr (std::is_assignable_v<bool&, std::invoke_result_t<TCallable&&, TArgs&&..., decltype(std::get<Index>(tuple))>>)
{
if (!std::invoke(callable, args..., std::get<Index>(tuple)))
return;
}
else
{
std::invoke(callable, args..., std::get<Index>(tuple));
}
if constexpr (Index + 1 < Size)
for_each<Index + 1>(
std::forward<TTuple>(tuple),
std::forward<TCallable>(callable),
std::forward<TArgs>(args)...);
}
}
例:
#include <iostream>
int main()
{
std::tuple<int, char> items{ 1, 'a' };
for_each(items, [](const auto& item) {
std::cout << item << "\n";
});
std::cout << "---\n";
for_each(items, [](const auto& item) {
std::cout << item << "\n";
return false;
});
}
输出:
1
a
---
1
如果要使用std :: tuple,并且具有支持可变参数模板的C ++编译器,请尝试下面的代码(已通过g ++ 4.5进行了测试)。这应该是您问题的答案。
#include <tuple>
// ------------- UTILITY---------------
template<int...> struct index_tuple{};
template<int I, typename IndexTuple, typename... Types>
struct make_indexes_impl;
template<int I, int... Indexes, typename T, typename ... Types>
struct make_indexes_impl<I, index_tuple<Indexes...>, T, Types...>
{
typedef typename make_indexes_impl<I + 1, index_tuple<Indexes..., I>, Types...>::type type;
};
template<int I, int... Indexes>
struct make_indexes_impl<I, index_tuple<Indexes...> >
{
typedef index_tuple<Indexes...> type;
};
template<typename ... Types>
struct make_indexes : make_indexes_impl<0, index_tuple<>, Types...>
{};
// ----------- FOR EACH -----------------
template<typename Func, typename Last>
void for_each_impl(Func&& f, Last&& last)
{
f(last);
}
template<typename Func, typename First, typename ... Rest>
void for_each_impl(Func&& f, First&& first, Rest&&...rest)
{
f(first);
for_each_impl( std::forward<Func>(f), rest...);
}
template<typename Func, int ... Indexes, typename ... Args>
void for_each_helper( Func&& f, index_tuple<Indexes...>, std::tuple<Args...>&& tup)
{
for_each_impl( std::forward<Func>(f), std::forward<Args>(std::get<Indexes>(tup))...);
}
template<typename Func, typename ... Args>
void for_each( std::tuple<Args...>& tup, Func&& f)
{
for_each_helper(std::forward<Func>(f),
typename make_indexes<Args...>::type(),
std::forward<std::tuple<Args...>>(tup) );
}
template<typename Func, typename ... Args>
void for_each( std::tuple<Args...>&& tup, Func&& f)
{
for_each_helper(std::forward<Func>(f),
typename make_indexes<Args...>::type(),
std::forward<std::tuple<Args...>>(tup) );
}
boost :: fusion是另一种选择,但是它需要自己的元组类型:boost :: fusion :: tuple。让我们更好地坚持标准!这是一个测试:
#include <iostream>
// ---------- FUNCTOR ----------
struct Functor
{
template<typename T>
void operator()(T& t) const { std::cout << t << std::endl; }
};
int main()
{
for_each( std::make_tuple(2, 0.6, 'c'), Functor() );
return 0;
}
可变参数模板的功能!
在MSVC STL中,有一个_For_each_tuple_element函数(未记录):
#include <tuple>
// ...
std::tuple<int, char, float> values{};
std::_For_each_tuple_element(values, [](auto&& value)
{
// process 'value'
});
其他人提到了一些设计良好的第三方库,您可能会想到这些库。但是,如果使用的C ++没有这些第三方库,则以下代码可能会有所帮助。
namespace detail {
template <class Tuple, std::size_t I, class = void>
struct for_each_in_tuple_helper {
template <class UnaryFunction>
static void apply(Tuple&& tp, UnaryFunction& f) {
f(std::get<I>(std::forward<Tuple>(tp)));
for_each_in_tuple_helper<Tuple, I + 1u>::apply(std::forward<Tuple>(tp), f);
}
};
template <class Tuple, std::size_t I>
struct for_each_in_tuple_helper<Tuple, I, typename std::enable_if<
I == std::tuple_size<typename std::decay<Tuple>::type>::value>::type> {
template <class UnaryFunction>
static void apply(Tuple&&, UnaryFunction&) {}
};
} // namespace detail
template <class Tuple, class UnaryFunction>
UnaryFunction for_each_in_tuple(Tuple&& tp, UnaryFunction f) {
detail::for_each_in_tuple_helper<Tuple, 0u>
::apply(std::forward<Tuple>(tp), f);
return std::move(f);
}
注意:该代码可以使用支持C ++ 11的任何编译器进行编译,并且可以与标准库的设计保持一致:
元组不必是std::tuple
,而可以是任何支持std::get
and 的元组std::tuple_size
;特别地,std::array
和std::pair
可以使用;
元组可以是引用类型,也可以是cv限定的;
它的行为与相似std::for_each
,并返回输入UnaryFunction
;
用于C ++ 14(或拉斯特版本)用户,typename std::enable_if<T>::type
并typename std::decay<T>::type
可以用它们的简化版本,被替换std::enable_if_t<T>
和std::decay_t<T>
;
对于C ++ 17(或更高版本)的用户,std::tuple_size<T>::value
可以用其简化版本代替std::tuple_size_v<T>
。
对于C ++ 20(或更高版本)的用户,SFINAE
可以使用来实现此功能Concepts
。
使用constexpr
and if constexpr
(C ++ 17),这非常简单直接:
template <std::size_t I = 0, typename ... Ts>
void print(std::tuple<Ts...> tup) {
if constexpr (I == sizeof...(Ts)) {
return;
} else {
std::cout << std::get<I>(tup) << ' ';
print<I+1>(tup);
}
}
我可能错过了这趟火车,但这将在这里供以后参考。
这是我根据这个答案和要点构造的:
#include <tuple>
#include <utility>
template<std::size_t N>
struct tuple_functor
{
template<typename T, typename F>
static void run(std::size_t i, T&& t, F&& f)
{
const std::size_t I = (N - 1);
switch(i)
{
case I:
std::forward<F>(f)(std::get<I>(std::forward<T>(t)));
break;
default:
tuple_functor<I>::run(i, std::forward<T>(t), std::forward<F>(f));
}
}
};
template<>
struct tuple_functor<0>
{
template<typename T, typename F>
static void run(std::size_t, T, F){}
};
然后,按以下方式使用它:
template<typename... T>
void logger(std::string format, T... args) //behaves like C#'s String.Format()
{
auto tp = std::forward_as_tuple(args...);
auto fc = [](const auto& t){std::cout << t;};
/* ... */
std::size_t some_index = ...
tuple_functor<sizeof...(T)>::run(some_index, tp, fc);
/* ... */
}
可能还有改进的空间。
根据OP的代码,它将变为:
const std::size_t num = sizeof...(T);
auto my_tuple = std::forward_as_tuple(t...);
auto do_sth = [](const auto& elem){/* ... */};
for(int i = 0; i < num; ++i)
tuple_functor<num>::run(i, my_tuple, do_sth);
在这里,这里和这里看到的所有答案中,我喜欢@sigidagi的最佳迭代方式。不幸的是,他的回答很冗长,我认为这掩盖了内在的清晰度。
这是我的版本他的解决方案,它更简洁,并与工作的std::tuple
,std::pair
和std::array
。
template<typename UnaryFunction>
void invoke_with_arg(UnaryFunction)
{}
/**
* Invoke the unary function with each of the arguments in turn.
*/
template<typename UnaryFunction, typename Arg0, typename... Args>
void invoke_with_arg(UnaryFunction f, Arg0&& a0, Args&&... as)
{
f(std::forward<Arg0>(a0));
invoke_with_arg(std::move(f), std::forward<Args>(as)...);
}
template<typename Tuple, typename UnaryFunction, std::size_t... Indices>
void for_each_helper(Tuple&& t, UnaryFunction f, std::index_sequence<Indices...>)
{
using std::get;
invoke_with_arg(std::move(f), get<Indices>(std::forward<Tuple>(t))...);
}
/**
* Invoke the unary function for each of the elements of the tuple.
*/
template<typename Tuple, typename UnaryFunction>
void for_each(Tuple&& t, UnaryFunction f)
{
using size = std::tuple_size<typename std::remove_reference<Tuple>::type>;
for_each_helper(
std::forward<Tuple>(t),
std::move(f),
std::make_index_sequence<size::value>()
);
}
演示:coliru
C ++ 14级的std::make_index_sequence
可以实现对C ++ 11。
boost的元组提供了辅助功能get_head()
,get_tail()
因此您的辅助功能可能如下所示:
inline void call_do_sth(const null_type&) {};
template <class H, class T>
inline void call_do_sth(cons<H, T>& x) { x.get_head().do_sth(); call_do_sth(x.get_tail()); }
如此处http://www.boost.org/doc/libs/1_34_0/libs/tuple/doc/tuple_advanced_interface.html中所述
与std::tuple
它应该相似。
实际上,不幸的std::tuple
是,似乎没有提供这样的接口,因此之前建议的方法应该可以使用,或者您需要切换到boost::tuple
具有其他好处的方法(例如已经提供的io运算符)。尽管boost::tuple
gcc 有缺点-它尚不接受可变参数模板,但由于我的计算机上未安装最新版本的boost,因此该问题可能已得到解决。
我偶然发现了一个遍历功能对象元组的相同问题,因此这里有一个解决方案:
#include <tuple>
#include <iostream>
// Function objects
class A
{
public:
inline void operator()() const { std::cout << "A\n"; };
};
class B
{
public:
inline void operator()() const { std::cout << "B\n"; };
};
class C
{
public:
inline void operator()() const { std::cout << "C\n"; };
};
class D
{
public:
inline void operator()() const { std::cout << "D\n"; };
};
// Call iterator using recursion.
template<typename Fobjects, int N = 0>
struct call_functors
{
static void apply(Fobjects const& funcs)
{
std::get<N>(funcs)();
// Choose either the stopper or descend further,
// depending if N + 1 < size of the tuple.
using caller = std::conditional_t
<
N + 1 < std::tuple_size_v<Fobjects>,
call_functors<Fobjects, N + 1>,
call_functors<Fobjects, -1>
>;
caller::apply(funcs);
}
};
// Stopper.
template<typename Fobjects>
struct call_functors<Fobjects, -1>
{
static void apply(Fobjects const& funcs)
{
}
};
// Call dispatch function.
template<typename Fobjects>
void call(Fobjects const& funcs)
{
call_functors<Fobjects>::apply(funcs);
};
using namespace std;
int main()
{
using Tuple = tuple<A,B,C,D>;
Tuple functors = {A{}, B{}, C{}, D{}};
call(functors);
return 0;
}
输出:
A
B
C
D
另一种选择是为元组实现迭代器。这样的好处是您可以使用标准库提供的各种算法以及基于范围的for循环。https://foonathan.net/2017/03/tuple-iterator/解释了一种优雅的方法。基本思想是使用提供迭代器的begin()
和end()
方法将元组转换为范围。迭代器本身返回std::variant<...>
,然后可以使用进行访问std::visit
。
这里有一些例子:
auto t = std::tuple{ 1, 2.f, 3.0 };
auto r = to_range(t);
for(auto v : r)
{
std::visit(unwrap([](auto& x)
{
x = 1;
}), v);
}
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(unwrap([](auto& x)
{
x = 0;
}), v);
});
std::accumulate(begin(r), end(r), 0.0, [](auto acc, auto v)
{
return acc + std::visit(unwrap([](auto& x)
{
return static_cast<double>(x);
}), v);
});
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(unwrap([](const auto& x)
{
std::cout << x << std::endl;
}), v);
});
std::for_each(begin(r), end(r), [](auto v)
{
std::visit(overload(
[](int x) { std::cout << "int" << std::endl; },
[](float x) { std::cout << "float" << std::endl; },
[](double x) { std::cout << "double" << std::endl; }), v);
});
我的实现(很大程度上基于上面链接中的解释):
#ifndef TUPLE_RANGE_H
#define TUPLE_RANGE_H
#include <utility>
#include <functional>
#include <variant>
#include <type_traits>
template<typename Accessor>
class tuple_iterator
{
public:
tuple_iterator(Accessor acc, const int idx)
: acc_(acc), index_(idx)
{
}
tuple_iterator operator++()
{
++index_;
return *this;
}
template<typename T>
bool operator ==(tuple_iterator<T> other)
{
return index_ == other.index();
}
template<typename T>
bool operator !=(tuple_iterator<T> other)
{
return index_ != other.index();
}
auto operator*() { return std::invoke(acc_, index_); }
[[nodiscard]] int index() const { return index_; }
private:
const Accessor acc_;
int index_;
};
template<bool IsConst, typename...Ts>
struct tuple_access
{
using tuple_type = std::tuple<Ts...>;
using tuple_ref = std::conditional_t<IsConst, const tuple_type&, tuple_type&>;
template<typename T>
using element_ref = std::conditional_t<IsConst,
std::reference_wrapper<const T>,
std::reference_wrapper<T>>;
using variant_type = std::variant<element_ref<Ts>...>;
using function_type = variant_type(*)(tuple_ref);
using table_type = std::array<function_type, sizeof...(Ts)>;
private:
template<size_t Index>
static constexpr function_type create_accessor()
{
return { [](tuple_ref t) -> variant_type
{
if constexpr (IsConst)
return std::cref(std::get<Index>(t));
else
return std::ref(std::get<Index>(t));
} };
}
template<size_t...Is>
static constexpr table_type create_table(std::index_sequence<Is...>)
{
return { create_accessor<Is>()... };
}
public:
static constexpr auto table = create_table(std::make_index_sequence<sizeof...(Ts)>{});
};
template<bool IsConst, typename...Ts>
class tuple_range
{
public:
using tuple_access_type = tuple_access<IsConst, Ts...>;
using tuple_ref = typename tuple_access_type::tuple_ref;
static constexpr auto tuple_size = sizeof...(Ts);
explicit tuple_range(tuple_ref tuple)
: tuple_(tuple)
{
}
[[nodiscard]] auto begin() const
{
return tuple_iterator{ create_accessor(), 0 };
}
[[nodiscard]] auto end() const
{
return tuple_iterator{ create_accessor(), tuple_size };
}
private:
tuple_ref tuple_;
auto create_accessor() const
{
return [this](int idx)
{
return std::invoke(tuple_access_type::table[idx], tuple_);
};
}
};
template<bool IsConst, typename...Ts>
auto begin(const tuple_range<IsConst, Ts...>& r)
{
return r.begin();
}
template<bool IsConst, typename...Ts>
auto end(const tuple_range<IsConst, Ts...>& r)
{
return r.end();
}
template <class ... Fs>
struct overload : Fs... {
explicit overload(Fs&&... fs) : Fs{ fs }... {}
using Fs::operator()...;
template<class T>
auto operator()(std::reference_wrapper<T> ref)
{
return (*this)(ref.get());
}
template<class T>
auto operator()(std::reference_wrapper<const T> ref)
{
return (*this)(ref.get());
}
};
template <class F>
struct unwrap : overload<F>
{
explicit unwrap(F&& f) : overload<F>{ std::forward<F>(f) } {}
using overload<F>::operator();
};
template<typename...Ts>
auto to_range(std::tuple<Ts...>& t)
{
return tuple_range<false, Ts...>{t};
}
template<typename...Ts>
auto to_range(const std::tuple<Ts...>& t)
{
return tuple_range<true, Ts...>{t};
}
#endif
通过将传递给const std::tuple<>&
,也支持只读访问to_range()
。
扩展@Stypox答案,我们可以使它们的解决方案更通用(从C ++ 17开始)。通过添加可调用函数参数:
template<size_t I = 0, typename... Tp, typename F>
void for_each_apply(std::tuple<Tp...>& t, F &&f) {
f(std::get<I>(t));
if constexpr(I+1 != sizeof...(Tp)) {
for_each_apply<I+1>(t, std::forward<F>(f));
}
}
然后,我们需要一种策略来访问每种类型。
让我们从一些助手开始(前两个来自cppreference):
template<class... Ts> struct overloaded : Ts... { using Ts::operator()...; };
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
template<class ... Ts> struct variant_ref { using type = std::variant<std::reference_wrapper<Ts>...>; };
variant_ref
用于允许修改元组的状态。
用法:
std::tuple<Foo, Bar, Foo> tuples;
for_each_apply(tuples,
[](variant_ref<Foo, Bar>::type &&v) {
std::visit(overloaded {
[](Foo &arg) { arg.foo(); },
[](Bar const &arg) { arg.bar(); },
}, v);
});
结果:
Foo0
Bar
Foo0
Foo1
Bar
Foo1
为了完整起见,这是我的Bar
&Foo
:
struct Foo {
void foo() {std::cout << "Foo" << i++ << std::endl;}
int i = 0;
};
struct Bar {
void bar() const {std::cout << "Bar" << std::endl;}
};