使用所得的另一基准strsplit
从基部可以目前被推荐给分割用逗号分隔的字符串在列到不同的行,因为它是最快的在宽范围的尺寸:
s <- strsplit(v$director, ",", fixed=TRUE)
s <- data.frame(director=unlist(s), AB=rep(v$AB, lengths(s)))
请注意,使用fixed=TRUE
时间对计时有重大影响。
比较方法:
met <- alist(base = {s <- strsplit(v$director, ",") #Matthew Lundberg
s <- data.frame(director=unlist(s), AB=rep(v$AB, sapply(s, FUN=length)))}
, baseLength = {s <- strsplit(v$director, ",") #Rich Scriven
s <- data.frame(director=unlist(s), AB=rep(v$AB, lengths(s)))}
, baseLeFix = {s <- strsplit(v$director, ",", fixed=TRUE)
s <- data.frame(director=unlist(s), AB=rep(v$AB, lengths(s)))}
, cSplit = s <- cSplit(v, "director", ",", direction = "long") #A5C1D2H2I1M1N2O1R2T1
, dt = s <- setDT(v)[, lapply(.SD, function(x) unlist(tstrsplit(x, "," #Jaap
, fixed=TRUE))), by = AB][!is.na(director)]
#, dt2 = s <- setDT(v)[, strsplit(director, "," #Jaap #Only Unique
# , fixed=TRUE), by = .(AB, director)][,.(director = V1, AB)]
, dplyr = {s <- v %>% #Jaap
mutate(director = strsplit(director, ",", fixed=TRUE)) %>%
unnest(director)}
, tidyr = s <- separate_rows(v, director, sep = ",") #Jaap
, stack = s <- stack(setNames(strsplit(v$director, ",", fixed=TRUE), v$AB)) #Jaap
#, dt3 = {s <- setDT(v)[, strsplit(director, ",", fixed=TRUE), #Uwe #Only Unique
# by = .(AB, director)][, director := NULL][, setnames(.SD, "V1", "director")]}
, dt4 = {s <- setDT(v)[, .(director = unlist(strsplit(director, "," #Uwe
, fixed = TRUE))), by = .(AB)]}
, dt5 = {s <- vT[, .(director = unlist(strsplit(director, "," #Uwe
, fixed = TRUE))), by = .(AB)]}
)
库:
library(microbenchmark)
library(splitstackshape) #cSplit
library(data.table) #dt, dt2, dt3, dt4
#setDTthreads(1) #Looks like it has here minor effect
library(dplyr) #dplyr
library(tidyr) #dplyr, tidyr
数据:
v0 <- data.frame(director = c("Aaron Blaise,Bob Walker", "Akira Kurosawa",
"Alan J. Pakula", "Alan Parker", "Alejandro Amenabar", "Alejandro Gonzalez Inarritu",
"Alejandro Gonzalez Inarritu,Benicio Del Toro", "Alejandro González Iñárritu",
"Alex Proyas", "Alexander Hall", "Alfonso Cuaron", "Alfred Hitchcock",
"Anatole Litvak", "Andrew Adamson,Marilyn Fox", "Andrew Dominik",
"Andrew Stanton", "Andrew Stanton,Lee Unkrich", "Angelina Jolie,John Stevenson",
"Anne Fontaine", "Anthony Harvey"), AB = c('A', 'B', 'A', 'A', 'B', 'B', 'B', 'A', 'B', 'A', 'B', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'A'))
计算和计时结果:
n <- 10^(0:5)
x <- lapply(n, function(n) {v <- v0[rep(seq_len(nrow(v0)), n),]
vT <- setDT(v)
ti <- min(100, max(3, 1e4/n))
microbenchmark(list = met, times = ti, control=list(order="block"))})
y <- do.call(cbind, lapply(x, function(y) aggregate(time ~ expr, y, median)))
y <- cbind(y[1], y[-1][c(TRUE, FALSE)])
y[-1] <- y[-1] / 1e6 #ms
names(y)[-1] <- paste("n:", n * nrow(v0))
y #Time in ms
# expr n: 20 n: 200 n: 2000 n: 20000 n: 2e+05 n: 2e+06
#1 base 0.2989945 0.6002820 4.8751170 46.270246 455.89578 4508.1646
#2 baseLength 0.2754675 0.5278900 3.8066300 37.131410 442.96475 3066.8275
#3 baseLeFix 0.2160340 0.2424550 0.6674545 4.745179 52.11997 555.8610
#4 cSplit 1.7350820 2.5329525 11.6978975 99.060448 1053.53698 11338.9942
#5 dt 0.7777790 0.8420540 1.6112620 8.724586 114.22840 1037.9405
#6 dplyr 6.2425970 7.9942780 35.1920280 334.924354 4589.99796 38187.5967
#7 tidyr 4.0323765 4.5933730 14.7568235 119.790239 1294.26959 11764.1592
#8 stack 0.2931135 0.4672095 2.2264155 22.426373 289.44488 2145.8174
#9 dt4 0.5822910 0.6414900 1.2214470 6.816942 70.20041 787.9639
#10 dt5 0.5015235 0.5621240 1.1329110 6.625901 82.80803 636.1899
注意,方法如
(v <- rbind(v0[1:2,], v0[1,]))
# director AB
#1 Aaron Blaise,Bob Walker A
#2 Akira Kurosawa B
#3 Aaron Blaise,Bob Walker A
setDT(v)[, strsplit(director, "," #Jaap #Only Unique
, fixed=TRUE), by = .(AB, director)][,.(director = V1, AB)]
# director AB
#1: Aaron Blaise A
#2: Bob Walker A
#3: Akira Kurosawa B
返回strsplit
为unique
董事,并可能与可比
tmp <- unique(v)
s <- strsplit(tmp$director, ",", fixed=TRUE)
s <- data.frame(director=unlist(s), AB=rep(tmp$AB, lengths(s)))
但是据我了解,这不是必需的。