我有一个vector<int>
带有整数的容器(例如{1,2,3,4}),我想转换为以下形式的字符串
"1,2,3,4"
在C ++中最干净的方法是什么?在Python中,这就是我的操作方式:
>>> array = [1,2,3,4]
>>> ",".join(map(str,array))
'1,2,3,4'
Answers:
绝对不如Python优雅,但没有什么比C ++中的Python优雅。
您可以使用stringstream
...
#include <sstream>
//...
std::stringstream ss;
for(size_t i = 0; i < v.size(); ++i)
{
if(i != 0)
ss << ",";
ss << v[i];
}
std::string s = ss.str();
您也可以使用std::for_each
代替。
std::string s = ss.str()
。如果需要const char*
,请使用s.c_str()
。(请注意,尽管在语法上正确,但ss.str().c_str()
会给您一个const char*
指向临时的提示,该临时提示将在完整表达式的结尾处不复存在。这很痛。)
#include <sstream>
使用std :: for_each和lambda可以做一些有趣的事情。
#include <iostream>
#include <sstream>
int main()
{
int array[] = {1,2,3,4};
std::for_each(std::begin(array), std::end(array),
[&std::cout, sep=' '](int x) mutable {
out << sep << x; sep=',';
});
}
请参阅我写的一堂小课的这个问题。这不会打印结尾的逗号。同样,如果我们假设C ++ 14将继续为我们提供基于范围的等效算法,例如:
namespace std {
// I am assuming something like this in the C++14 standard
// I have no idea if this is correct but it should be trivial to write if it does not appear.
template<typename C, typename I>
void copy(C const& container, I outputIter) {copy(begin(container), end(container), outputIter);}
}
using POI = PrefexOutputIterator;
int main()
{
int array[] = {1,2,3,4};
std::copy(array, POI(std::cout, ","));
// ",".join(map(str,array)) // closer
}
您可以使用std :: accumulate。考虑以下示例
if (v.empty()
return std::string();
std::string s = std::accumulate(v.begin()+1, v.end(), std::to_string(v[0]),
[](const std::string& a, int b){
return a + ',' + std::to_string(b);
});
','
应该是","
string
该类的+
运算符有一个重载,也可以接受字符。所以','
只是罚款。
另一种选择是使用std::copy
和ostream_iterator
类:
#include <iterator> // ostream_iterator
#include <sstream> // ostringstream
#include <algorithm> // copy
std::ostringstream stream;
std::copy(array.begin(), array.end(), std::ostream_iterator<>(stream));
std::string s=stream.str();
s.erase(s.length()-1);
还不如Python好。为此,我创建了一个join
函数:
template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
T result;
for (A it=begin;
it!=end;
it++)
{
if (!result.empty())
result.append(t);
result.append(*it);
}
return result;
}
然后像这样使用它:
std::string s=join(array.begin(), array.end(), std::string(","));
您可能会问为什么我传递了迭代器。好吧,实际上我想反转数组,所以我这样使用它:
std::string s=join(array.rbegin(), array.rend(), std::string(","));
理想情况下,我想模板化到可以推断char类型并使用字符串流的程度,但是我还不能弄清楚。
join
函数也可以与向量一起使用吗?请您举个例子,我是C ++的新手。
使用Boost和C ++ 11可以这样实现:
auto array = {1,2,3,4};
join(array | transformed(tostr), ",");
好吧,差不多。这是完整的示例:
#include <array>
#include <iostream>
#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/transformed.hpp>
int main() {
using boost::algorithm::join;
using boost::adaptors::transformed;
auto tostr = static_cast<std::string(*)(int)>(std::to_string);
auto array = {1,2,3,4};
std::cout << join(array | transformed(tostr), ",") << std::endl;
return 0;
}
感谢执政官。
您可以像这样处理任何值类型:
template<class Container>
std::string join(Container const & container, std::string delimiter) {
using boost::algorithm::join;
using boost::adaptors::transformed;
using value_type = typename Container::value_type;
auto tostr = static_cast<std::string(*)(value_type)>(std::to_string);
return join(container | transformed(tostr), delimiter);
};
这只是为了解决1800 INFORMATION对他的第二种缺乏通用性的解决方案所提出的困惑,而不是试图回答以下问题:
template <class Str, class It>
Str join(It begin, const It end, const Str &sep)
{
typedef typename Str::value_type char_type;
typedef typename Str::traits_type traits_type;
typedef typename Str::allocator_type allocator_type;
typedef std::basic_ostringstream<char_type,traits_type,allocator_type>
ostringstream_type;
ostringstream_type result;
if(begin!=end)
result << *begin++;
while(begin!=end) {
result << sep;
result << *begin++;
}
return result.str();
}
在“我的机器”上工作。
operator<<
重载)。当然,没有的类型operator<<
可能会引起非常混乱的错误消息。
很多模板/想法。我的不那么通用或高效,但是我只是遇到了同样的问题,想把它作为简短而又甜美的东西放进去。它以最短的行数获胜... :)
std::stringstream joinedValues;
for (auto value: array)
{
joinedValues << value << ",";
}
//Strip off the trailing comma
std::string result = joinedValues.str().substr(0,joinedValues.str().size()-1);
substr(...)
,而是使用pop_back()
删除了最后一个字符,然后变得更加清晰。
如果您想做std::cout << join(myVector, ",") << std::endl;
,可以做以下事情:
template <typename C, typename T> class MyJoiner
{
C &c;
T &s;
MyJoiner(C &&container, T&& sep) : c(std::forward<C>(container)), s(std::forward<T>(sep)) {}
public:
template<typename C, typename T> friend std::ostream& operator<<(std::ostream &o, MyJoiner<C, T> const &mj);
template<typename C, typename T> friend MyJoiner<C, T> join(C &&container, T&& sep);
};
template<typename C, typename T> std::ostream& operator<<(std::ostream &o, MyJoiner<C, T> const &mj)
{
auto i = mj.c.begin();
if (i != mj.c.end())
{
o << *i++;
while (i != mj.c.end())
{
o << mj.s << *i++;
}
}
return o;
}
template<typename C, typename T> MyJoiner<C, T> join(C &&container, T&& sep)
{
return MyJoiner<C, T>(std::forward<C>(container), std::forward<T>(sep));
}
请注意,此解决方案将联接直接连接到输出流,而不是创建辅助缓冲区,并且将对在ostream上具有operator <<的任何类型进行处理。
boost::algorithm::join()
当您使用vector<char*>
而不是时,这也可以在失败的地方使用vector<string>
。
string s;
for (auto i : v)
s += (s.empty() ? "" : ",") + to_string(i);
std::stringstream
大型数组有效,因为stringstream
它能够乐观地分配内存,从而导致n
此答案的大小数组达到O(n.log(n))的性能,而不是O(n²)。也stringstream
可能不会为建立临时字符串to_string(i)
。
我喜欢1800的答案。但是我会将第一次迭代移出循环,因为if语句的结果在第一次迭代后仅更改一次
template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
T result;
A it = begin;
if (it != end)
{
result.append(*it);
++it;
}
for( ;
it!=end;
++it)
{
result.append(t);
result.append(*it);
}
return result;
}
当然,如果您愿意,可以将其减少为更少的语句:
template <class T, class A>
T join(const A &begin, const A &end, const T &t)
{
T result;
A it = begin;
if (it != end)
result.append(*it++);
for( ; it!=end; ++it)
result.append(t).append(*it);
return result;
}
++i
除了他们真正需要的地方,i++
因为这是他们在有所作为时不会忘记这一点的唯一方法。(BTW对我来说也是一样。)他们以前学习过Java,各种C-ism都在流行,并且花了几个月时间(每周1次讲座+实验室工作),但最后大部分他们学会了使用预递增的习惯。
有一些有趣的尝试可以为问题提供一个优雅的解决方案。我有一个想法,可以使用模板化流来有效地解决OP的原始难题。尽管这是一篇过时的文章,但我希望那些偶然发现此问题的未来用户会发现我的解决方案很有用。
首先,某些答案(包括接受的答案)不会促进可重用性。由于C ++并没有提供一种优雅的方式来连接标准库中的字符串(我已经看到),因此创建一个灵活且可重用的字符串变得很重要。这是我的照片:
// Replace with your namespace //
namespace my {
// Templated join which can be used on any combination of streams, iterators and base types //
template <typename TStream, typename TIter, typename TSeperator>
TStream& join(TStream& stream, TIter begin, TIter end, TSeperator seperator) {
// A flag which, when true, has next iteration prepend our seperator to the stream //
bool sep = false;
// Begin iterating through our list //
for (TIter i = begin; i != end; ++i) {
// If we need to prepend a seperator, do it //
if (sep) stream << seperator;
// Stream the next value held by our iterator //
stream << *i;
// Flag that next loops needs a seperator //
sep = true;
}
// As a convenience, we return a reference to the passed stream //
return stream;
}
}
现在使用此功能,您可以简单地执行以下操作:
// Load some data //
std::vector<int> params;
params.push_back(1);
params.push_back(2);
params.push_back(3);
params.push_back(4);
// Store and print our results to standard out //
std::stringstream param_stream;
std::cout << my::join(param_stream, params.begin(), params.end(), ",").str() << std::endl;
// A quick and dirty way to print directly to standard out //
my::join(std::cout, params.begin(), params.end(), ",") << std::endl;
请注意,使用流如何使此解决方案变得异常灵活,因为我们可以将结果存储在字符串流中以在以后回收它,也可以直接写成标准输出,文件,甚至写成实现为流的网络连接。要打印的类型必须简单可迭代,并且与源流兼容。STL提供了与各种类型兼容的各种流。所以你真的可以带着这个去镇上。在我的头顶上方,您的向量可以是int,float,double,string,unsigned int,SomeObject *等。
我创建了一个辅助头文件来添加扩展的连接支持。
只需将以下代码添加到您的常规头文件中,并在需要时将其包括在内。
用法示例:
/* An example for a mapping function. */
ostream&
map_numbers(ostream& os, const void* payload, generic_primitive data)
{
static string names[] = {"Zero", "One", "Two", "Three", "Four"};
os << names[data.as_int];
const string* post = reinterpret_cast<const string*>(payload);
if (post) {
os << " " << *post;
}
return os;
}
int main() {
int arr[] = {0,1,2,3,4};
vector<int> vec(arr, arr + 5);
cout << vec << endl; /* Outputs: '0 1 2 3 4' */
cout << join(vec.begin(), vec.end()) << endl; /* Outputs: '0 1 2 3 4' */
cout << join(vec.begin(), vec.begin() + 2) << endl; /* Outputs: '0 1 2' */
cout << join(vec.begin(), vec.end(), ", ") << endl; /* Outputs: '0, 1, 2, 3, 4' */
cout << join(vec.begin(), vec.end(), ", ", map_numbers) << endl; /* Outputs: 'Zero, One, Two, Three, Four' */
string post = "Mississippi";
cout << join(vec.begin() + 1, vec.end(), ", ", map_numbers, &post) << endl; /* Outputs: 'One Mississippi, Two mississippi, Three mississippi, Four mississippi' */
return 0;
}
幕后的代码:
#include <iostream>
#include <vector>
#include <list>
#include <set>
#include <unordered_set>
using namespace std;
#define GENERIC_PRIMITIVE_CLASS_BUILDER(T) generic_primitive(const T& v) { value.as_##T = v; }
#define GENERIC_PRIMITIVE_TYPE_BUILDER(T) T as_##T;
typedef void* ptr;
/** A union that could contain a primitive or void*,
* used for generic function pointers.
* TODO: add more primitive types as needed.
*/
struct generic_primitive {
GENERIC_PRIMITIVE_CLASS_BUILDER(int);
GENERIC_PRIMITIVE_CLASS_BUILDER(ptr);
union {
GENERIC_PRIMITIVE_TYPE_BUILDER(int);
GENERIC_PRIMITIVE_TYPE_BUILDER(ptr);
};
};
typedef ostream& (*mapping_funct_t)(ostream&, const void*, generic_primitive);
template<typename T>
class Join {
public:
Join(const T& begin, const T& end,
const string& separator = " ",
mapping_funct_t mapping = 0,
const void* payload = 0):
m_begin(begin),
m_end(end),
m_separator(separator),
m_mapping(mapping),
m_payload(payload) {}
ostream&
apply(ostream& os) const
{
T begin = m_begin;
T end = m_end;
if (begin != end)
if (m_mapping) {
m_mapping(os, m_payload, *begin++);
} else {
os << *begin++;
}
while (begin != end) {
os << m_separator;
if (m_mapping) {
m_mapping(os, m_payload, *begin++);
} else {
os << *begin++;
}
}
return os;
}
private:
const T& m_begin;
const T& m_end;
const string m_separator;
const mapping_funct_t m_mapping;
const void* m_payload;
};
template <typename T>
Join<T>
join(const T& begin, const T& end,
const string& separator = " ",
ostream& (*mapping)(ostream&, const void*, generic_primitive) = 0,
const void* payload = 0)
{
return Join<T>(begin, end, separator, mapping, payload);
}
template<typename T>
ostream&
operator<<(ostream& os, const vector<T>& vec) {
return join(vec.begin(), vec.end()).apply(os);
}
template<typename T>
ostream&
operator<<(ostream& os, const list<T>& lst) {
return join(lst.begin(), lst.end()).apply(os);
}
template<typename T>
ostream&
operator<<(ostream& os, const set<T>& s) {
return join(s.begin(), s.end()).apply(os);
}
template<typename T>
ostream&
operator<<(ostream& os, const Join<T>& vec) {
return vec.apply(os);
}
这是通用的C ++ 11解决方案,可让您执行
int main() {
vector<int> v {1,2,3};
cout << join(v, ", ") << endl;
string s = join(v, '+').str();
}
代码是:
template<typename Iterable, typename Sep>
class Joiner {
const Iterable& i_;
const Sep& s_;
public:
Joiner(const Iterable& i, const Sep& s) : i_(i), s_(s) {}
std::string str() const {std::stringstream ss; ss << *this; return ss.str();}
template<typename I, typename S> friend std::ostream& operator<< (std::ostream& os, const Joiner<I,S>& j);
};
template<typename I, typename S>
std::ostream& operator<< (std::ostream& os, const Joiner<I,S>& j) {
auto elem = j.i_.begin();
if (elem != j.i_.end()) {
os << *elem;
++elem;
while (elem != j.i_.end()) {
os << j.s_ << *elem;
++elem;
}
}
return os;
}
template<typename I, typename S>
inline Joiner<I,S> join(const I& i, const S& s) {return Joiner<I,S>(i, s);}
以下是将a vector
中的元素转换为a的简单实用方法string
:
std::string join(const std::vector<int>& numbers, const std::string& delimiter = ",") {
std::ostringstream result;
for (const auto number : numbers) {
if (result.tellp() > 0) { // not first round
result << delimiter;
}
result << number;
}
return result.str();
}
你需要#include <sstream>
的ostringstream
。
在不限于或特定返回字符串类型的通用解决方案上扩展@sbi的尝试std::vector<int>
。下面显示的代码可以这样使用:
std::vector<int> vec{ 1, 2, 3 };
// Call modern range-based overload.
auto str = join( vec, "," );
auto wideStr = join( vec, L"," );
// Call old-school iterator-based overload.
auto str = join( vec.begin(), vec.end(), "," );
auto wideStr = join( vec.begin(), vec.end(), L"," );
在原始代码中,如果分隔符是字符串文字,则模板参数推导无法产生正确的返回字符串类型(如上述示例中所示)。在这种情况下,Str::value_type
函数主体中的typedef 不正确。该代码假定该Str
类型始终为std::basic_string
,因此对于字符串文字而言显然会失败。
为了解决这个问题,以下代码尝试从分隔符参数中推断出字符类型,并使用该字符类型生成默认的返回字符串类型。这是通过使用实现的boost::range_value
,该方法从给定的范围类型中提取元素类型。
#include <string>
#include <sstream>
#include <boost/range.hpp>
template< class Sep, class Str = std::basic_string< typename boost::range_value< Sep >::type >, class InputIt >
Str join( InputIt first, const InputIt last, const Sep& sep )
{
using char_type = typename Str::value_type;
using traits_type = typename Str::traits_type;
using allocator_type = typename Str::allocator_type;
using ostringstream_type = std::basic_ostringstream< char_type, traits_type, allocator_type >;
ostringstream_type result;
if( first != last )
{
result << *first++;
}
while( first != last )
{
result << sep << *first++;
}
return result.str();
}
现在,我们可以轻松地提供基于范围的重载,该范围可以简单地转发到基于迭代器的重载:
template <class Sep, class Str = std::basic_string< typename boost::range_value<Sep>::type >, class InputRange>
Str join( const InputRange &input, const Sep &sep )
{
// Include the standard begin() and end() in the overload set for ADL. This makes the
// function work for standard types (including arrays), aswell as any custom types
// that have begin() and end() member functions or overloads of the standalone functions.
using std::begin; using std::end;
// Call iterator-based overload.
return join( begin(input), end(input), sep );
}
就像@capone一样,
std::string join(const std::vector<std::string> &str_list ,
const std::string &delim=" ")
{
if(str_list.size() == 0) return "" ;
return std::accumulate( str_list.cbegin() + 1,
str_list.cend(),
str_list.at(0) ,
[&delim](const std::string &a , const std::string &b)
{
return a + delim + b ;
} ) ;
}
template <typename ST , typename TT>
std::vector<TT> map(TT (*op)(ST) , const vector<ST> &ori_vec)
{
vector<TT> rst ;
std::transform(ori_vec.cbegin() ,
ori_vec.cend() , back_inserter(rst) ,
[&op](const ST& val){ return op(val) ;} ) ;
return rst ;
}
然后我们可以像下面这样调用:
int main(int argc , char *argv[])
{
vector<int> int_vec = {1,2,3,4} ;
vector<string> str_vec = map<int,string>(to_string, int_vec) ;
cout << join(str_vec) << endl ;
return 0 ;
}
就像python一样:
>>> " ".join( map(str, [1,2,3,4]) )
我用这样的东西
namespace std
{
// for strings join
string to_string( string value )
{
return value;
}
} // namespace std
namespace // anonymous
{
template< typename T >
std::string join( const std::vector<T>& values, char delimiter )
{
std::string result;
for( typename std::vector<T>::size_type idx = 0; idx < values.size(); ++idx )
{
if( idx != 0 )
result += delimiter;
result += std::to_string( values[idx] );
}
return result;
}
} // namespace anonymous
我从@sbi的答案开始,但是大多数时候最终将结果字符串输送到流中,因此创建了以下解决方案,可以将其通过管道传输到流中,而无需在内存中创建完整的字符串。
它的用法如下:
#include "string_join.h"
#include <iostream>
#include <vector>
int main()
{
std::vector<int> v = { 1, 2, 3, 4 };
// String version
std::string str = join(v, std::string(", "));
std::cout << str << std::endl;
// Directly piped to stream version
std::cout << join(v, std::string(", ")) << std::endl;
}
其中string_join.h是:
#pragma once
#include <iterator>
#include <sstream>
template<typename Str, typename It>
class joined_strings
{
private:
const It begin, end;
Str sep;
public:
typedef typename Str::value_type char_type;
typedef typename Str::traits_type traits_type;
typedef typename Str::allocator_type allocator_type;
private:
typedef std::basic_ostringstream<char_type, traits_type, allocator_type>
ostringstream_type;
public:
joined_strings(It begin, const It end, const Str &sep)
: begin(begin), end(end), sep(sep)
{
}
operator Str() const
{
ostringstream_type result;
result << *this;
return result.str();
}
template<typename ostream_type>
friend ostream_type& operator<<(
ostream_type &ostr, const joined_strings<Str, It> &joined)
{
It it = joined.begin;
if(it!=joined.end)
ostr << *it;
for(++it; it!=joined.end; ++it)
ostr << joined.sep << *it;
return ostr;
}
};
template<typename Str, typename It>
inline joined_strings<Str, It> join(It begin, const It end, const Str &sep)
{
return joined_strings<Str, It>(begin, end, sep);
}
template<typename Str, typename Container>
inline joined_strings<Str, typename Container::const_iterator> join(
Container container, const Str &sep)
{
return join(container.cbegin(), container.cend(), sep);
}
我写了下面的代码。它基于C#string.join。它适用于std :: string和std :: wstring以及许多类型的向量。(评论示例)
这样称呼它:
std::vector<int> vVectorOfIds = {1, 2, 3, 4, 5};
std::wstring wstrStringForSQLIn = Join(vVectorOfIds, L',');
码:
// Generic Join template (mimics string.Join() from C#)
// Written by RandomGuy (stackoverflow) 09-01-2017
// Based on Brian R. Bondy anwser here:
// http://stackoverflow.com/questions/1430757/c-vector-to-string
// Works with char, wchar_t, std::string and std::wstring delimiters
// Also works with a different types of vectors like ints, floats, longs
template<typename T, typename D>
auto Join(const std::vector<T> &vToMerge, const D &delimiter)
{
// We use std::conditional to get the correct type for the stringstream (char or wchar_t)
// stringstream = basic_stringstream<char>, wstringstream = basic_stringstream<wchar_t>
using strType =
std::conditional<
std::is_same<D, std::string>::value,
char,
std::conditional<
std::is_same<D, char>::value,
char,
wchar_t
>::type
>::type;
std::basic_stringstream<strType> ss;
for (size_t i = 0; i < vToMerge.size(); ++i)
{
if (i != 0)
ss << delimiter;
ss << vToMerge[i];
}
return ss.str();
}
我使用template
function
来连接vector
项目,并if
通过仅循环遍历第一个到倒数第二个项目vector
,然后在for
循环后加入最后一个项目,从而删除了不必要的语句。这也消除了需要额外的代码来删除连接字符串末尾的额外分隔符的需求。因此,没有if
语句减慢迭代速度,也没有多余的分隔符需要整理。
这产生了一个优雅的函数调用加入vector
的string
,integer
或double
等
我写了两个版本:一个返回字符串;另一个返回字符串。另一个直接写入流。
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
using namespace std;
// Return a string of joined vector items.
template<typename T>
string join(const vector<T>& v, const string& sep)
{
ostringstream oss;
const auto LAST = v.end() - 1;
// Iterate through the first to penultimate items appending the separator.
for (typename vector<T>::const_iterator p = v.begin(); p != LAST; ++p)
{
oss << *p << sep;
}
// Join the last item without a separator.
oss << *LAST;
return oss.str();
}
// Write joined vector items directly to a stream.
template<typename T>
void join(const vector<T>& v, const string& sep, ostream& os)
{
const auto LAST = v.end() - 1;
// Iterate through the first to penultimate items appending the separator.
for (typename vector<T>::const_iterator p = v.begin(); p != LAST; ++p)
{
os << *p << sep;
}
// Join the last item without a separator.
os << *LAST;
}
int main()
{
vector<string> strings
{
"Joined",
"from",
"beginning",
"to",
"end"
};
vector<int> integers{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
vector<double> doubles{ 1.2, 3.4, 5.6, 7.8, 9.0 };
cout << join(strings, "... ") << endl << endl;
cout << join(integers, ", ") << endl << endl;
cout << join(doubles, "; ") << endl << endl;
join(strings, "... ", cout);
cout << endl << endl;
join(integers, ", ", cout);
cout << endl << endl;
join(doubles, "; ", cout);
cout << endl << endl;
return 0;
}
Joined... from... beginning... to... end
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1.2; 3.4; 5.6; 7.8; 9
Joined... from... beginning... to... end
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1.2; 3.4; 5.6; 7.8; 9