将光频率转换为RGB?


Answers:


44

这是整个转换过程的详细说明:http : //www.fourmilab.ch/documents/specrend/。包含源代码!


5
Fourmilab的文章提出了一个重要的观点,即某些颜色无法用RGB表示(明亮的橙色就是一个很好的例子),因为您不能通过将三种原色加在一起来“制造”任意颜色的光,无论我们的物理老师告诉我们什么(我的做得很好)。太糟糕了,但实际上通常并不致命。
弗朗西斯·戴维

1
除此之外:en.wikipedia.org/wiki/Srgb 本文是在sRGB标准被广泛采用之前编写的。还请注意在“计算时假定的2°标准色度观测”短语,这意味着CIE 1931表伴随源到纸张发现应使用不CIE 1964
GrayFace

最好提供一些示例来说明如何使用代码。它需要函数作为参数,使用温度来计算颜色等。人们会很高兴知道要删除和更改什么才能使其正常工作。
托马什Zato -恢复莫妮卡

2
值得注意的是,在RGB颜色空间中,只能精确表示所有可能可见波长的一小部分。转换过程非常复杂且模棱两可。参见physics.stackexchange.com/a/94446/5089physics.stackexchange.com/a/419628/5089
紫罗兰色长颈鹿

28

对于懒惰的人(像我一样),这是@ user151323答案中找到的代码的Java实现(即,仅是Spectra Lab Report中找到的pascal代码的简单翻译):

static private final double Gamma = 0.80;
static private final double IntensityMax = 255;

/**
 * Taken from Earl F. Glynn's web page:
 * <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
 */
public static int[] waveLengthToRGB(double Wavelength) {
    double factor;
    double Red, Green, Blue;

    if((Wavelength >= 380) && (Wavelength < 440)) {
        Red = -(Wavelength - 440) / (440 - 380);
        Green = 0.0;
        Blue = 1.0;
    } else if((Wavelength >= 440) && (Wavelength < 490)) {
        Red = 0.0;
        Green = (Wavelength - 440) / (490 - 440);
        Blue = 1.0;
    } else if((Wavelength >= 490) && (Wavelength < 510)) {
        Red = 0.0;
        Green = 1.0;
        Blue = -(Wavelength - 510) / (510 - 490);
    } else if((Wavelength >= 510) && (Wavelength < 580)) {
        Red = (Wavelength - 510) / (580 - 510);
        Green = 1.0;
        Blue = 0.0;
    } else if((Wavelength >= 580) && (Wavelength < 645)) {
        Red = 1.0;
        Green = -(Wavelength - 645) / (645 - 580);
        Blue = 0.0;
    } else if((Wavelength >= 645) && (Wavelength < 781)) {
        Red = 1.0;
        Green = 0.0;
        Blue = 0.0;
    } else {
        Red = 0.0;
        Green = 0.0;
        Blue = 0.0;
    }

    // Let the intensity fall off near the vision limits

    if((Wavelength >= 380) && (Wavelength < 420)) {
        factor = 0.3 + 0.7 * (Wavelength - 380) / (420 - 380);
    } else if((Wavelength >= 420) && (Wavelength < 701)) {
        factor = 1.0;
    } else if((Wavelength >= 701) && (Wavelength < 781)) {
        factor = 0.3 + 0.7 * (780 - Wavelength) / (780 - 700);
    } else {
        factor = 0.0;
    }


    int[] rgb = new int[3];

    // Don't want 0^x = 1 for x <> 0
    rgb[0] = Red == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
    rgb[1] = Green == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
    rgb[2] = Blue == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));

    return rgb;
}

3
您的代码中似乎有一个错误。例如,如果波长为439.5,则函数返回黑色。我相信,该网站上的原始代码正在使用整数(我根本不知道pascal)。我建议更改Wavelength<=439Wavelength<440
Hassedev

2
你是对的!感谢您向我指出:)已更正。
Tarc

是否期望在某些频率上重复RFB?(红色):652-rgb(255,0,0)| 660-rgb(255,0,0)| 692-rgb(255,0,0)| 700-rgb(255,0,0)| ...
Rodrigo Borba

14

大概的概念:

  1. 使用CEI颜色匹配功能将波长转换为XYZ颜色
  2. 将XYZ转换为RGB
  3. 将分量剪辑为[0..1],然后乘以255以适合无符号字节范围。

步骤1和2可能会有所不同。

有几种颜色匹配功能,可以用作或解析近似值(由@Tarc和@Haochen Xie建议)。如果需要平稳的结果,表是最好的。

没有单一的RGB颜色空间。可以使用多个变换矩阵和不同种类的伽马校正。

以下是我最近想出的C#代码。它在“ CIE 1964标准观察者”表上使用线性插值,并使用sRGB矩阵+伽马校正

static class RgbCalculator {

    const int
         LEN_MIN = 380,
         LEN_MAX = 780,
         LEN_STEP = 5;

    static readonly double[]
        X = {
                0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
                0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
                0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
                0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
                1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
                0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
                0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
                0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
                0.000033
            },

        Y = {
                0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
                0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
                0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
                0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
                0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
                0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
                0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
                0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
                0.000013
            },

        Z = {
                0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
                1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
                0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
                0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000
            };

    static readonly double[]
        MATRIX_SRGB_D65 = {
             3.2404542, -1.5371385, -0.4985314,
            -0.9692660,  1.8760108,  0.0415560,
             0.0556434, -0.2040259,  1.0572252
        };

    public static byte[] Calc(double len) {
        if(len < LEN_MIN || len > LEN_MAX)
            return new byte[3];

        len -= LEN_MIN;
        var index = (int)Math.Floor(len / LEN_STEP);
        var offset = len - LEN_STEP * index;

        var x = Interpolate(X, index, offset);
        var y = Interpolate(Y, index, offset);
        var z = Interpolate(Z, index, offset);

        var m = MATRIX_SRGB_D65;

        var r = m[0] * x + m[1] * y + m[2] * z;
        var g = m[3] * x + m[4] * y + m[5] * z;
        var b = m[6] * x + m[7] * y + m[8] * z;

        r = Clip(GammaCorrect_sRGB(r));
        g = Clip(GammaCorrect_sRGB(g));
        b = Clip(GammaCorrect_sRGB(b));

        return new[] { 
            (byte)(255 * r),
            (byte)(255 * g),
            (byte)(255 * b)
        };
    }

    static double Interpolate(double[] values, int index, double offset) {
        if(offset == 0)
            return values[index];

        var x0 = index * LEN_STEP;
        var x1 = x0 + LEN_STEP;
        var y0 = values[index];
        var y1 = values[1 + index];

        return y0 + offset * (y1 - y0) / (x1 - x0);
    }

    static double GammaCorrect_sRGB(double c) {
        if(c <= 0.0031308)
            return 12.92 * c;

        var a = 0.055;
        return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
    }

    static double Clip(double c) {
        if(c < 0)
            return 0;
        if(c > 1)
            return 1;
        return c;
    }
}

400-700 nm范围的结果:

在此处输入图片说明


这对我来说真的很有趣。我有一个想法,可以使用类似的方法来给出正常的响应,但是要使用WXYZ响应来模拟四色体的响应,该四色体具有第四个视锥细胞,该视锥细胞的频率响应远远不同于其他任何普通的三种类型的视锥细胞。这可能会让我拍摄源图像并推断出它们所看到的差异。注意,他们看不到新的颜色,例如,对于我们大多数人来说,混合的灯光(和)为特定的黄色似乎与特定频率的黄色相同,但是对于他们来说,灯光不会混合到那黄色。
phorgan1

当然,对于特定的RGB颜色,可能可以通过多种方式获得它。叶子的绿色可能来自于除绿色以外的所有物质的滤除,或者绿色可能已经被滤除,但是纳米特性可能导致蓝色和黄色反射并看起来与绿色相同。给定图像而不是光,我能区分什么方法?
phorgan1

10

尽管这是一个古老的问题,并且已经获得了一些很好的答案,但是当我尝试在我的应用程序中实现这种转换功能时,我对这里已经列出的算法不满意,并且做了自己的研究,这给了我很好的结果。因此,我将发布一个新答案。

经过一些研究,我遇到了CIE XYZ颜色匹配函数的简单解析近似,并尝试在我的应用程序中采用引入的多瓣分段高斯拟合算法。本文仅描述了将波长转换为相应的XYZ值的函数,因此我实现了一个在sRGB颜色空间中将XYZ转换为RGB并将其组合的函数。结果令人赞叹,值得分享:

/**
 * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
 * monitor
 *
 * @param wavelength wavelength in nm
 * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
 * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
 */
public static int wavelengthToRGB(double wavelength){
    double[] xyz = cie1931WavelengthToXYZFit(wavelength);
    double[] rgb = srgbXYZ2RGB(xyz);

    int c = 0;
    c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
    c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
    c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;

    return c;
}

/**
 * Convert XYZ to RGB in the sRGB color space
 * <p>
 * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
 * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
 * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
 *
 * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
 */
public static double[] srgbXYZ2RGB(double[] xyz) {
    double x = xyz[0];
    double y = xyz[1];
    double z = xyz[2];

    double rl =  3.2406255 * x + -1.537208  * y + -0.4986286 * z;
    double gl = -0.9689307 * x +  1.8757561 * y +  0.0415175 * z;
    double bl =  0.0557101 * x + -0.2040211 * y +  1.0569959 * z;

    return new double[] {
            srgbXYZ2RGBPostprocess(rl),
            srgbXYZ2RGBPostprocess(gl),
            srgbXYZ2RGBPostprocess(bl)
    };
}

/**
 * helper function for {@link #srgbXYZ2RGB(double[])}
 */
private static double srgbXYZ2RGBPostprocess(double c) {
    // clip if c is out of range
    c = c > 1 ? 1 : (c < 0 ? 0 : c);

    // apply the color component transfer function
    c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;

    return c;
}

/**
 * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
 * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
 * <p>
 * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
 * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
 *
 * @param wavelength wavelength in nm
 * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 */
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
    double wave = wavelength;

    double x;
    {
        double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
        double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
        double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

        x =   0.362 * Math.exp(-0.5 * t1 * t1)
            + 1.056 * Math.exp(-0.5 * t2 * t2)
            - 0.065 * Math.exp(-0.5 * t3 * t3);
    }

    double y;
    {
        double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
        double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

        y =   0.821 * Math.exp(-0.5 * t1 * t1)
            + 0.286 * Math.exp(-0.5 * t2 * t2);
    }

    double z;
    {
        double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
        double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

        z =   1.217 * Math.exp(-0.5 * t1 * t1)
            + 0.681 * Math.exp(-0.5 * t2 * t2);
    }

    return new double[] { x, y, z };
}

我的代码是用Java 8编写的,但不难移植到较低版本的Java和其他语言。


1
@Baddack,您是对的:这只是对计算值进行进一步转换的一种好方法。我记不清了,但是我认为它首先应用了伽马校正,然后将其截断了范围值。也许我应该用单独的方法来完成它,但是我实际上并没有在编写代码时考虑共享代码,而这是一个玩具项目,我需要这种转换。
郝晨谢剑

1
@Baddack我已经挖出了我需要此转换的项目,并重写了这一部分,而没有使用Java 8 lambda,因此代码更加清晰。我实际上错误地记得transferDoubleUnaryOperator在做什么(因此,我之前的评论中的解释不正确),因此请检查新代码。
晨谢俊

1
@Baddack我很高兴代码可以帮助您。如果您不介意的话,可以请您投票否定它有可能帮助更多人?
郝晨谢俊

1
@Baddack Math.pow(c,1. / 2.4)= c ^(1 / 2.4),即,将c提升为1 / 2.4的幂;1.仅仅是1,但类型将是double代替int
浩辰谢

3
@Ruslan因为此算法是CIE标准观察者(可以认为是“精确”模型)的分析拟合,所以存在错误。但是从本文来看,如果您看一下第7页上的图1(将(d)与(f)比较),则此方法提供了非常近似的近似值。尤其是当您查看(f)时,即使在标准模型中,您也会看到一条蓝线。此外,对纯光源的颜色感知会因人而异,因此这种误差水平可以忽略不计。
谢浩辰

7

您正在谈论从波长转换为RGB值。

看这里,可能会回答您的问题。您将拥有使用源代码执行此操作的实用程序以及一些说明。

WaveLengthToRGB


1
只需阅读同一页“波长和RGB值之间就没有唯一的一对一映射”-如此一来,您就陷入了查找表和试探法的困境。首先,我将研究HSV到RGB的转换,因为“色相”的范围从蓝色到红色。由于在RGB域中,红色+蓝色=紫罗兰色,而紫罗兰色具有最短的可见波长,因此可能略有偏移。
whatnick

3
实际上是一样的吗?频率= c /波长
Mauricio Scheffer

1
@Mauricio Scheffer是的,完全一样。
约瑟夫·戈登

这种Bruton的算法是美学而不是现实
mykhal

8
@ Joseph Gordon-非常不同意。考虑一下空气中发出的400nm的绿色射线撞击水面,然后在水中传播。水的折射率为1.33,因此水中的射线波长现在为300nm,显然不会改变颜色。使射线“着色”的问题是频率,而不是波长。在相同的物质(真空,空气,水)中,频率(颜色)映射到相同的波长。在不同的媒体中-不会。
mbaitoff 2011年

3

我想我也可以附上正式答复跟进我的评论。最好的选择是使用HSV颜色空间 -尽管色相代表波长,但不是一对一的比较。


1
您的链接已死。
Ruslan'9

3

我对已知的色相值和频率进行了线性拟合(删除了红色和紫色,因为它们在频率值中延伸得太远,以至于它们有点歪斜了),我得到了一个大概的转换方程。

就像
频率(以太赫兹为单位)= 474 +(3/4)(色相角(以度为单位))

我曾尝试环顾四周,看看是否有人想出了这个公式,但截至2010年5月,我还没有发现任何东西。


2

方法一

这已被清理干净并测试了@ haochen-xie的C ++ 11版本。我还添加了一个函数,该函数可以将值0转换为1到可见光谱中的波长,该方法可以使用此方法。您可以将其放在一个头文件中,而无需任何依赖即可使用它。此版本将在此处维护。

#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp

namespace common_utils {

class ColorUtils {
public:

    static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
    {
        //actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
        wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
    }

    /**
    * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
    * monitor
    *
    * @param wavelength wavelength in nm
    * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
    * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
    */
    static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
        double x, y, z;
        cie1931WavelengthToXYZFit(wavelength, x, y, z);
        double dr, dg, db;
        srgbXYZ2RGB(x, y, z, dr, dg, db);

        r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
        g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
        b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
    }

    /**
    * Convert XYZ to RGB in the sRGB color space
    * <p>
    * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
    * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
    * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
    *
    * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
    */
    static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
        double rl = 3.2406255 * x + -1.537208  * y + -0.4986286 * z;
        double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
        double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;

        r = srgbXYZ2RGBPostprocess(rl);
        g = srgbXYZ2RGBPostprocess(gl);
        b = srgbXYZ2RGBPostprocess(bl);
    }

    /**
    * helper function for {@link #srgbXYZ2RGB(double[])}
    */
    static double srgbXYZ2RGBPostprocess(double c) {
        // clip if c is out of range
        c = c > 1 ? 1 : (c < 0 ? 0 : c);

        // apply the color component transfer function
        c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;

        return c;
    }

    /**
    * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
    * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
    * <p>
    * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
    * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
    *
    * @param wavelength wavelength in nm
    * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    */
    static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
        double wave = wavelength;

        {
            double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
            double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
            double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

            x = 0.362 * std::exp(-0.5 * t1 * t1)
                + 1.056 * std::exp(-0.5 * t2 * t2)
                - 0.065 * std::exp(-0.5 * t3 * t3);
        }

        {
            double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
            double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

            y = 0.821 * std::exp(-0.5 * t1 * t1)
                + 0.286 * std::exp(-0.5 * t2 * t2);
        }

        {
            double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
            double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

            z = 1.217 * std::exp(-0.5 * t1 * t1)
                + 0.681 * std::exp(-0.5 * t2 * t2);
        }
    }

};

} //namespace

#endif

从375nm到725nm的颜色图如下所示:

在此处输入图片说明

这种方法的一个问题是,它只能在400-700nm之间工作,而在外面,它会急剧下降为黑色。另一个问题是较窄的蓝色。

为了进行比较,以下是maxmax.com视觉常见问题解答中的颜色:

在此处输入图片说明

我用它来可视化深度图,其中每个像素代表以米为单位的深度值,如下所示:

在此处输入图片说明

方法2

这由Aeash Partow 作为bitmap_image单个文件仅标头库的一部分实现:

inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
   // Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
   double red   = 0.0;
   double green = 0.0;
   double blue  = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
   {
      red   = -(wave_length_nm - 440.0) / (440.0 - 380.0);
      green = 0.0;
      blue  = 1.0;
   }
   else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
   {
      red   = 0.0;
      green = (wave_length_nm - 440.0) / (490.0 - 440.0);
      blue  = 1.0;
   }
   else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
   {
      red   = 0.0;
      green = 1.0;
      blue  = -(wave_length_nm - 510.0) / (510.0 - 490.0);
   }
   else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
   {
      red   = (wave_length_nm - 510.0) / (580.0 - 510.0);
      green = 1.0;
      blue  = 0.0;
   }
   else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
   {
      red   = 1.0;
      green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
      blue  = 0.0;
   }
   else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
   {
      red   = 1.0;
      green = 0.0;
      blue  = 0.0;
   }

   double factor = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
      factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
   else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
      factor = 1.0;
   else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
      factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
   else
      factor = 0.0;

   rgb_t result;

   const double gamma         =   0.8;
   const double intensity_max = 255.0;

   #define round(d) std::floor(d + 0.5)

   result.red   = static_cast<unsigned char>((red   == 0.0) ? red   : round(intensity_max * std::pow(red   * factor, gamma)));
   result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
   result.blue  = static_cast<unsigned char>((blue  == 0.0) ? blue  : round(intensity_max * std::pow(blue  * factor, gamma)));

   #undef round

   return result;
}

375-725nm的波长图如下所示:

在此处输入图片说明

因此,这在400-725nm下更有用。当我可视化与方法1中相同的深度图时,我得到以下提示。这些黑线存在一个明显的问题,我认为这表明该代码中有一些小错误,但我没有更深入地了解。此外,紫罗兰色在此方法中较窄,这会导致较远物体的对比度降低。

在此处输入图片说明


0

将波长的CIExy朝向D65白色投射到sRGB色域上

#!/usr/bin/ghci
ångstrømsfromTHz terahertz = 2997924.58 / terahertz
tristimulusXYZfromÅngstrøms å=map(sum.map(stimulus))[
 [[1056,5998,379,310],[362,4420,160,267],[-65,5011,204,262]],
 [[821,5688,469,405],[286,5309,163,311]],
 [[1217,4370,118,360],[681,4590,260,138]]]
 where stimulus[ω,μ,ς,σ]=ω/1000*exp(-((å-μ)/if å<μ then ς else σ)^2/2)

standardRGBfromTristimulusXYZ xyz=
 map(gamma.sum.zipWith(*)(gamutConfine xyz))[
 [3.2406,-1.5372,-0.4986],[-0.9689,1.8758,0.0415],[0.0557,-0.2040,1.057]]
gamma u=if u<=0.0031308 then 12.92*u else (u**(5/12)*211-11)/200
[red,green,blue,black]=
 [[0.64,0.33],[0.3,0.6],[0.15,0.06],[0.3127,0.3290,0]]
ciexyYfromXYZ xyz=if xyz!!1==0 then black else map(/sum xyz)xyz
cieXYZfromxyY[x,y,l]=if y==0 then black else[x*l/y,l,(1-x-y)*l/y]
gamutConfine xyz=last$xyz:[cieXYZfromxyY[x0+t*(x1-x0),y0+t*(y1-y0),xyz!!1]|
 x0:y0:_<-[black],x1:y1:_<-[ciexyYfromXYZ xyz],i<-[0..2],
 [x2,y2]:[x3,y3]:_<-[drop i[red,green,blue,red]],
 det<-[(x0-x1)*(y2-y3)-(y0-y1)*(x2-x3)],
 t <-[((x0-x2)*(y2-y3)-(y0-y2)*(x2-x3))/det|det/=0],0<=t,t<=1]

sRGBfromÅ=standardRGBfromTristimulusXYZ.tristimulusXYZfromÅngstrøms
x s rgb=concat["\ESC[48;2;",
               intercalate";"$map(show.(17*).round.(15*).max 0.min 1)rgb,
               "m",s,"\ESC[49m"]
spectrum=concatMap(x" ".sRGBfromÅ)$takeWhile(<7000)$iterate(+60)4000
main=putStrLn spectrum
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.