快速排列->数字->排列映射算法


113

我有n个元素。举个例子,假设有7个元素1234567。我知道有7个!=这7个元素的5040个排列可能。

我想要一个包含两个功能的快速算法:

f(number)将0到5039之间的数字映射到唯一排列,并且

f'(排列)将排列映射回生成它的编号。

我不关心数字和排列之间的对应关系,只要每个排列都有自己的唯一编号即可。

因此,例如,我可能有一些功能

f(0) = '1234567'
f'('1234567') = 0

想到的最快的算法是枚举所有排列并在两个方向上创建一个查找表,以便一旦创建表,f(0)将为O(1),f('1234567')将为a在字符串上查找。但是,这会占用大量内存,尤其是当n变大时。

谁能提出另一种可以快速运行且没有内存不足的算法?


尽管下面的算法非常全面,但是您正确地指出最快的算法是查找表。您实际上并不是在谈论“那么多”的内存,尽管它当然取决于您的系统和平台。但是,如果查找表足够了,并且这是一个真实的应用程序,请使用它。快速简单!
柯克·布罗德赫斯特

14
你这么说,但是n不必变得很大就可以变得愚蠢。对于12个元素,则12个!是479,001,600排列。那是一个很大的查询表!
ijw

不要因不同的帖子而感到困惑,请使用n表示不同的含义。一些n代表字符串长度,一些n代表可能的排列计数。不要盲目比较大的O概念。-晚来的人要注意
把友情留在无盐

Answers:


157

要描述n个元素的排列,您会看到对于第一个元素结束的位置,您有n种可能性,因此可以用0到n-1之间的数字来描述。对于下一个元素所处的位置,您还有n-1个剩余的可能性,因此可以用0到n-2之间的数字来描述。
等等直到您拥有n个数字。

作为对于n = 5的示例中,考虑使置换abcdecaebd

  • a(第一个元素)在第二个位置结束,因此我们将其分配为索引1
  • b结束于第四个位置,该位置将是索引3,但它是剩余的第三个位置,因此我们将其分配为2
  • c结束于第一个剩余位置,该位置始终为0
  • d结束于最后一个剩余位置,该位置(仅在两个剩余位置中)为1
  • e结束于唯一的剩余位置,索引为0

因此,我们有了索引序列{1,2,0,1,0}

现在您知道,例如在二进制数中,“ xyz”表示z + 2y + 4x。对于十进制数字,
它是z + 10y + 100x。每个数字乘以一定的权重,然后将结果相加。权重的明显模式当然是权重为w = b ^ k,其中b为数字的底数,k为数字的索引。(我将始终从右边开始计算数字,并从索引0开始为最右边的数字。同样,当我谈论“第一个”数字时,我指的是最右边的数字。)

理由为什么数字的权重遵循此模式是可以通过从0到k中的数字来表示的最高数目必须正好1比,可以仅通过使用数字K + 1来表示的最低数目更低。二进制格式的0111必须比1000小1。十进制格式的099999必须比100000小1。

编码为可变基数
重要的规则是后续数字之间的间隔恰好为1。意识到这一点,我们可以用一个可变基数来表示索引序列。每个数字的基数是该数字的不同可能性的数量。对于十进制,每个数字都有10种可能性,对于我们的系统,最右边的数字将具有1种可能性,而最左边的数字将具有n种可能性。但是,由于最右边的数字(序列中的最后一个数字)始终为0,因此我们将其省略。这意味着我们剩下的底数是2到n。通常,第k个数字的底数为b [k] = k +2。数字k所允许的最大值为h [k] = b [k]-1 = k + 1。

我们关于数字权重w [k]的规则要求h [i] * w [i]的总和(其中i从i = 0到i = k)等于1 * w [k + 1]。循环地说,w [k + 1] = w [k] + h [k] * w [k] = w [k] *(h [k] + 1)。第一个权重w [0]应该始终为1。从那里开始,我们有以下值:

k    h[k] w[k]    

0    1    1  
1    2    2    
2    3    6    
3    4    24   
...  ...  ...
n-1  n    n!  

(一般关系w [k-1] = k!很容易通过归纳证明。)

转换序列得到的数字就是s [k] * w [k]的和,其中k从0到n-1。这里s [k]是序列的第k个元素(最右边,从0开始)。例如,以我们的{1,2,0,1,0}为例,最右边的元素如前所述被剥离:{ 1,2,0,1 }。我们的总和是1 * 1 + 0 * 2 + 2 * 6 +1 * 24 = 37

请注意,如果我们为每个索引取最大位置,我们将得到{4,3,2,1,0},并转换为119。由于选择了数字编码中的权重,因此我们不会跳过任何数字,从0到119的所有数字均有效。恰好有120个,即n!在我们的示例中,对于n = 5,恰好是不同排列的数量。因此,您可以看到我们的编码数字完全指定了所有可能的排列。

从基于变量的
解码解码类似于转换为二进制或十进制。常见的算法是这样的:

int number = 42;
int base = 2;
int[] bits = new int[n];

for (int k = 0; k < bits.Length; k++)
{
    bits[k] = number % base;
    number = number / base;
}

对于我们的可变基数:

int n = 5;
int number = 37;

int[] sequence = new int[n - 1];
int base = 2;

for (int k = 0; k < sequence.Length; k++)
{
    sequence[k] = number % base;
    number = number / base;

    base++; // b[k+1] = b[k] + 1
}

这正确解码我们37回{1,2,0,1}(sequence{1, 0, 2, 1}在此代码示例,但无论......只要你适当的指数)。我们只需要在右端添加0(请记住最后一个元素对其新位置始终只有一种可能性)即可返回原始序列{1、2、0、1、0}。

使用索引序列
排列列表您可以使用以下算法根据特定的索引序列排列列表。不幸的是,它是一个O(n²)算法。

int n = 5;
int[] sequence = new int[] { 1, 2, 0, 1, 0 };
char[] list = new char[] { 'a', 'b', 'c', 'd', 'e' };
char[] permuted = new char[n];
bool[] set = new bool[n];

for (int i = 0; i < n; i++)
{
    int s = sequence[i];
    int remainingPosition = 0;
    int index;

    // Find the s'th position in the permuted list that has not been set yet.
    for (index = 0; index < n; index++)
    {
        if (!set[index])
        {
            if (remainingPosition == s)
                break;

            remainingPosition++;
        }
    }

    permuted[index] = list[i];
    set[index] = true;
}

排列的通用表示
通常,您不会像我们所做的那样直观地表示排列,而只是通过应用排列后每个元素的绝对位置来表示。我们的例子中{1,2,0,1,0}为abcdecaebd通常由{1,3,0,4,2}表示。从0到4(或通常从0到n-1)的每个索引在此表示形式中仅出现一次。

以这种形式应用排列很容易:

int[] permutation = new int[] { 1, 3, 0, 4, 2 };

char[] list = new char[] { 'a', 'b', 'c', 'd', 'e' };
char[] permuted = new char[n];

for (int i = 0; i < n; i++)
{
    permuted[permutation[i]] = list[i];
}

反转非常相似:

for (int i = 0; i < n; i++)
{
    list[i] = permuted[permutation[i]];
}

从表示形式转换为通用表示形式
注意,如果我们采用算法使用索引序列对列表进行置换,并将其应用于标识置换{0,1,2,...,n-1},我们将得到排列,以通用形式表示。(在我们的示例中为{2,0,4,1,3})。

为了获得不可逆的预置换,我们应用了我刚刚展示的置换算法:

int[] identity = new int[] { 0, 1, 2, 3, 4 };
int[] inverted = { 2, 0, 4, 1, 3 };
int[] normal = new int[n];

for (int i = 0; i < n; i++)
{
    normal[identity[i]] = list[i];
}

或者,您也可以使用逆排列算法直接应用排列:

char[] list = new char[] { 'a', 'b', 'c', 'd', 'e' };
char[] permuted = new char[n];

int[] inverted = { 2, 0, 4, 1, 3 };

for (int i = 0; i < n; i++)
{
    permuted[i] = list[inverted[i]];
}

请注意,所有以通用形式处理置换的算法均为O(n),而以我们的形式应用置换的算法为O(n²)。如果需要多次应用置换,请首先将其转换为通用表示形式。


6
在“使用索引序列置换列表”中,提到了二次算法。这当然很好,因为n可能会很小。但是,通过订单统计树(pine.cs.yale.edu/pinewiki/OrderStatisticsTree),即最初将包含值0、1、2的红黑树,可以“轻松”将其减少为O(nlogn)。,...,n-1,每个节点都包含其下的子代数。这样一来,就可以在O(logn)时间中找到/删除第k个元素。
Dimitris Andreou

11
这些被称为Lehmer码。该链接也对它们进行了很好的解释,keithschwarz.com
interesting/

这个算法很棒,但是我发现有几种情况是错误的。取字符串“ 123”;第4个置换应为231,但根据此算法,它将为312。例如1234,第4个置换应为1342,但将其误认为是“ 1423”。如果我发现错误,请纠正我。谢谢。
艾萨克·李

@IsaacLi,如果我是对的,则f(4)= {2,0,0} =231。而f'(312)= {1,1,0} =3。对于1234,f(4)= {0, 2,0,0} =1342。而f'(1423)= {0,1 1,0} =3。这种算法确实令人鼓舞。我想知道这是OP的原创作品。我已经研究和分析了一段时间。而且我认为这是正确的:)
Midnite 2013年

如何从“我们的代表制”转换为“普通代表制” {1, 2, 0, 1, 0}-> {1, 3, 0, 4, 2}?反之亦然?可能吗?(不需要{1, 2, 0, 1, 0}<-> 之间进行转换{C, A, E, B, D},这需要O(n ^ 2)。)如果“我们的样式”和“公共样式”不可转换,则它们实际上是两个不同的东西,不是吗?谢谢x
midnite

18

我找到了O(n)算法,这是一个简短的说明http://antoinecomeau.blogspot.ca/2014/07/mapping-between-permutations-and.html

public static int[] perm(int n, int k)
{
    int i, ind, m=k;
    int[] permuted = new int[n];
    int[] elems = new int[n];

    for(i=0;i<n;i++) elems[i]=i;

    for(i=0;i<n;i++)
    {
            ind=m%(n-i);
            m=m/(n-i);
            permuted[i]=elems[ind];
            elems[ind]=elems[n-i-1];
    }

    return permuted;
}

public static int inv(int[] perm)
{
    int i, k=0, m=1;
    int n=perm.length;
    int[] pos = new int[n];
    int[] elems = new int[n];

    for(i=0;i<n;i++) {pos[i]=i; elems[i]=i;}

    for(i=0;i<n-1;i++)
    {
            k+=m*pos[perm[i]];
            m=m*(n-i);
            pos[elems[n-i-1]]=pos[perm[i]];
            elems[pos[perm[i]]]=elems[n-i-1];
    }

    return k;
}

1
如果我非常了解您的算法。您会发现所有已编码的可能性(在这种情况下,应该是n!种可能性)。然后,您根据编码的项目映射数字。
2014年

我在博客上添加了简短说明。
Antoine Comeau

1
这非常整洁。今天,我自己想出了相同的方法,但我错过了您可以省略两个相反的赋值的想法。
fuz 2016年

不要盲目地比较大的O概念,因为此答案中的n代表与其他答案不同(正如@ user3378649指出的那样),表示复杂度与字符串长度的阶乘比例。这个答案确实效率较低。
把友情留在无盐

可以按词典顺序进行调整吗?
格雷戈里·摩尔斯

7

复杂度可以降低到n * log(n),请参阅fxtbook的10.1.1节(“ Lehmer代码(反转表)”,第232ff页):http ://www.jjj.de/fxt/ #fxtbook 跳至10.1.1.1节(“大型数组计算”第235页)以了解快速方法。(GPLed,C ++)代码在同一网页上。


5

问题解决了。但是,我不确定这些年来您是否仍需要该解决方案。大声笑,我只是加入此站点,所以...检查我的Java置换类。您可以基于索引来获取符号排列,或者给出符号排列然后获取索引。

这是我的预变异班

/**
 ****************************************************************************************************************
 * Copyright 2015 Fred Pang fred@pnode.com
 ****************************************************************************************************************
 * A complete list of Permutation base on an index.
 * Algorithm is invented and implemented by Fred Pang fred@pnode.com
 * Created by Fred Pang on 18/11/2015.
 ****************************************************************************************************************
 * LOL this is my first Java project. Therefore, my code is very much like C/C++. The coding itself is not
 * very professional. but...
 *
 * This Permutation Class can be use to generate a complete list of all different permutation of a set of symbols.
 * nPr will be n!/(n-r)!
 * the user can input       n = the number of items,
 *                          r = the number of slots for the items,
 *                          provided n >= r
 *                          and a string of single character symbols
 *
 * the program will generate all possible permutation for the condition.
 *
 * Say if n = 5, r = 3, and the string is "12345", it will generate sll 60 different permutation of the set
 * of 3 character strings.
 *
 * The algorithm I used is base on a bin slot.
 * Just like a human or simply myself to generate a permutation.
 *
 * if there are 5 symbols to chose from, I'll have 5 bin slot to indicate which symbol is taken.
 *
 * Note that, once the Permutation object is initialized, or after the constructor is called, the permutation
 * table and all entries are defined, including an index.
 *
 * eg. if pass in value is 5 chose 3, and say the symbol string is "12345"
 * then all permutation table is logically defined (not physically to save memory).
 * It will be a table as follows
 *  index  output
 *      0   123
 *      1   124
 *      2   125
 *      3   132
 *      4   134
 *      5   135
 *      6   143
 *      7   145
 *      :     :
 *      58  542
 *      59  543
 *
 * all you need to do is call the "String PermGetString(int iIndex)" or the "int[] PermGetIntArray(int iIndex)"
 * function or method with an increasing iIndex, starting from 0 to getiMaxIndex() - 1. It will return the string
 * or the integer array corresponding to the index.
 *
 * Also notice that in the input string is "12345" of  position 01234, and the output is always in accenting order
 * this is how the permutation is generated.
 *
 * ***************************************************************************************************************
 * ====  W a r n i n g  ====
 * ***************************************************************************************************************
 *
 * There is very limited error checking in this class
 *
 * Especially the  int PermGetIndex(int[] iInputArray)  method
 * if the input integer array contains invalid index, it WILL crash the system
 *
 * the other is the string of symbol pass in when the object is created, not sure what will happen if the
 * string is invalid.
 * ***************************************************************************************************************
 *
 */
public class Permutation
{
    private boolean bGoodToGo = false;      // object status
    private boolean bNoSymbol = true;
    private BinSlot slot;                   // a bin slot of size n (input)
    private int nTotal;                     // n number for permutation
    private int rChose;                     // r position to chose
    private String sSymbol;                 // character string for symbol of each choice
    private String sOutStr;
    private int iMaxIndex;                  // maximum index allowed in the Get index function
    private int[] iOutPosition;             // output array
    private int[] iDivisorArray;            // array to do calculation

    public Permutation(int inCount, int irCount, String symbol)
    {
        if (inCount >= irCount)
        {
            // save all input values passed in
            this.nTotal = inCount;
            this.rChose = irCount;
            this.sSymbol = symbol;

            // some error checking
            if (inCount < irCount || irCount <= 0)
                return;                                 // do nothing will not set the bGoodToGo flag

            if (this.sSymbol.length() >= inCount)
            {
                bNoSymbol = false;
            }

            // allocate output storage
            this.iOutPosition = new int[this.rChose];

            // initialize the bin slot with the right size
            this.slot = new BinSlot(this.nTotal);

            // allocate and initialize divid array
            this.iDivisorArray = new int[this.rChose];

            // calculate default values base on n & r
            this.iMaxIndex = CalPremFormula(this.nTotal, this.rChose);

            int i;
            int j = this.nTotal - 1;
            int k = this.rChose - 1;

            for (i = 0; i < this.rChose; i++)
            {
                this.iDivisorArray[i] = CalPremFormula(j--, k--);
            }
            bGoodToGo = true;       // we are ready to go
        }
    }

    public String PermGetString(int iIndex)
    {
        if (!this.bGoodToGo) return "Error: Object not initialized Correctly";
        if (this.bNoSymbol) return "Error: Invalid symbol string";
        if (!this.PermEvaluate(iIndex)) return "Invalid Index";

        sOutStr = "";
        // convert string back to String output
        for (int i = 0; i < this.rChose; i++)
        {
            String sTempStr = this.sSymbol.substring(this.iOutPosition[i], iOutPosition[i] + 1);
            this.sOutStr = this.sOutStr.concat(sTempStr);
        }
        return this.sOutStr;
    }

    public int[] PermGetIntArray(int iIndex)
    {
        if (!this.bGoodToGo) return null;
        if (!this.PermEvaluate(iIndex)) return null ;
        return this.iOutPosition;
    }

    // given an int array, and get the index back.
    //
    //  ====== W A R N I N G ======
    //
    // there is no error check in the array that pass in
    // if any invalid value in the input array, it can cause system crash or other unexpected result
    //
    // function pass in an int array generated by the PermGetIntArray() method
    // then return the index value.
    //
    // this is the reverse of the PermGetIntArray()
    //
    public int PermGetIndex(int[] iInputArray)
    {
        if (!this.bGoodToGo) return -1;
        return PermDoReverse(iInputArray);
    }


    public int getiMaxIndex() {
    return iMaxIndex;
}

    // function to evaluate nPr = n!/(n-r)!
    public int CalPremFormula(int n, int r)
    {
        int j = n;
        int k = 1;
        for (int i = 0; i < r; i++, j--)
        {
            k *= j;
        }
        return k;
    }


//  PermEvaluate function (method) base on an index input, evaluate the correspond permuted symbol location
//  then output it to the iOutPosition array.
//
//  In the iOutPosition[], each array element corresponding to the symbol location in the input string symbol.
//  from location 0 to length of string - 1.

    private boolean PermEvaluate(int iIndex)
    {
        int iCurrentIndex;
        int iCurrentRemainder;
        int iCurrentValue = iIndex;
        int iCurrentOutSlot;
        int iLoopCount;

        if (iIndex >= iMaxIndex)
            return false;

        this.slot.binReset();               // clear bin content
        iLoopCount = 0;
        do {
            // evaluate the table position
            iCurrentIndex = iCurrentValue / this.iDivisorArray[iLoopCount];
            iCurrentRemainder = iCurrentValue % this.iDivisorArray[iLoopCount];

            iCurrentOutSlot = this.slot.FindFreeBin(iCurrentIndex);     // find an available slot
            if (iCurrentOutSlot >= 0)
                this.iOutPosition[iLoopCount] = iCurrentOutSlot;
            else return false;                                          // fail to find a slot, quit now

            this.slot.setStatus(iCurrentOutSlot);                       // set the slot to be taken
            iCurrentValue = iCurrentRemainder;                          // set new value for current value.
            iLoopCount++;                                               // increase counter
        } while (iLoopCount < this.rChose);

        // the output is ready in iOutPosition[]
        return true;
    }

    //
    // this function is doing the reverse of the permutation
    // the input is a permutation and will find the correspond index value for that entry
    // which is doing the opposit of the PermEvaluate() method
    //
    private int PermDoReverse(int[] iInputArray)
    {
        int iReturnValue = 0;
        int iLoopIndex;
        int iCurrentValue;
        int iBinLocation;

        this.slot.binReset();               // clear bin content

        for (iLoopIndex = 0; iLoopIndex < this.rChose; iLoopIndex++)
        {
            iCurrentValue = iInputArray[iLoopIndex];
            iBinLocation = this.slot.BinCountFree(iCurrentValue);
            this.slot.setStatus(iCurrentValue);                          // set the slot to be taken
            iReturnValue = iReturnValue + iBinLocation * this.iDivisorArray[iLoopIndex];
        }
        return iReturnValue;
    }


    /*******************************************************************************************************************
     *******************************************************************************************************************
     * Created by Fred on 18/11/2015.   fred@pnode.com
     *
     * *****************************************************************************************************************
     */
    private static class BinSlot
    {
        private int iBinSize;       // size of array
        private short[] eStatus;    // the status array must have length iBinSize

        private BinSlot(int iBinSize)
        {
            this.iBinSize = iBinSize;               // save bin size
            this.eStatus = new short[iBinSize];     // llocate status array
        }

        // reset the bin content. no symbol is in use
        private void binReset()
        {
            // reset the bin's content
            for (int i = 0; i < this.iBinSize; i++) this.eStatus[i] = 0;
        }

        // set the bin position as taken or the number is already used, cannot be use again.
        private void  setStatus(int iIndex) { this.eStatus[iIndex]= 1; }

        //
        // to search for the iIndex th unused symbol
        // this is important to search through the iindex th symbol
        // because this is how the table is setup. (or the remainder means)
        // note: iIndex is the remainder of the calculation
        //
        // for example:
        // in a 5 choose 3 permutation symbols "12345",
        // the index 7 item (count starting from 0) element is "1 4 3"
        // then comes the index 8, 8/12 result 0 -> 0th symbol in symbol string = '1'
        // remainder 8. then 8/3 = 2, now we need to scan the Bin and skip 2 unused bins
        //              current the bin looks 0 1 2 3 4
        //                                    x o o o o     x -> in use; o -> free only 0 is being used
        //                                      s s ^       skipped 2 bins (bin 1 and 2), we get to bin 3
        //                                                  and bin 3 is the bin needed. Thus symbol "4" is pick
        // in 8/3, there is a remainder 2 comes in this function as 2/1 = 2, now we have to pick the empty slot
        // for the new 2.
        // the bin now looks 0 1 2 3 4
        //                   x 0 0 x 0      as bin 3 was used by the last value
        //                     s s   ^      we skip 2 free bins and the next free bin is bin 4
        //                                  therefor the symbol "5" at the symbol array is pick.
        //
        // Thus, for index 8  "1 4 5" is the symbols.
        //
        //
        private int FindFreeBin(int iIndex)
        {
            int j = iIndex;

            if (j < 0 || j > this.iBinSize) return -1;               // invalid index

            for (int i = 0; i < this.iBinSize; i++)
            {
                if (this.eStatus[i] == 0)       // is it used
                {
                    // found an empty slot
                    if (j == 0)                 // this is a free one we want?
                        return i;               // yes, found and return it.
                    else                        // we have to skip this one
                        j--;                    // else, keep looking and count the skipped one
                }
            }
            assert(true);           // something is wrong
            return -1;              // fail to find the bin we wanted
        }

        //
        // this function is to help the PermDoReverse() to find out what is the corresponding
        // value during should be added to the index value.
        //
        // it is doing the opposite of int FindFreeBin(int iIndex) method. You need to know how this
        // FindFreeBin() works before looking into this function.
        //
        private int BinCountFree(int iIndex)
        {
            int iRetVal = 0;
            for (int i = iIndex; i > 0; i--)
            {
                if (this.eStatus[i-1] == 0)       // it is free
                {
                    iRetVal++;
                }
            }
            return iRetVal;
        }
    }
}
// End of file - Permutation.java

这是我的主班,展示如何使用该班。

/*
 * copyright 2015 Fred Pang
 *
 * This is the main test program for testing the Permutation Class I created.
 * It can be use to demonstrate how to use the Permutation Class and its methods to generate a complete
 * list of a permutation. It also support function to get back the index value as pass in a permutation.
 *
 * As you can see my Java is not very good. :)
 * This is my 1st Java project I created. As I am a C/C++ programmer for years.
 *
 * I still have problem with the Scanner class and the System class.
 * Note that there is only very limited error checking
 *
 *
 */

import java.util.Scanner;

public class Main
{
    private static Scanner scanner = new Scanner(System.in);

    public static void main(String[] args)
    {
        Permutation perm;       // declear the object
        String sOutString = "";
        int nCount;
        int rCount;
        int iMaxIndex;

        // Get user input
        System.out.println("Enter n: ");
        nCount = scanner.nextInt();

        System.out.println("Enter r: ");
        rCount = scanner.nextInt();

        System.out.println("Enter Symbol: ");
        sOutString = scanner.next();

        if (sOutString.length() < rCount)
        {
            System.out.println("String too short, default to numbers");
            sOutString = "";
        }

        // create object with user requirement
        perm = new Permutation(nCount, rCount, sOutString);

        // and print the maximum count
        iMaxIndex = perm.getiMaxIndex();
        System.out.println("Max count is:" + iMaxIndex);

        if (!sOutString.isEmpty())
        {
            for (int i = 0; i < iMaxIndex; i++)
            {   // print out the return permutation symbol string
                System.out.println(i + " " + perm.PermGetString(i));
            }
        }
        else
        {
            for (int i = 0; i < iMaxIndex; i++)
            {
                System.out.print(i + " ->");

                // Get the permutation array
                int[] iTemp = perm.PermGetIntArray(i);

                // print out the permutation
                for (int j = 0; j < rCount; j++)
                {
                    System.out.print(' ');
                    System.out.print(iTemp[j]);
                }

                // to verify my PermGetIndex() works. :)
                if (perm.PermGetIndex(iTemp)== i)
                {
                    System.out.println(" .");
                }
                else
                {   // oops something is wrong :(
                    System.out.println(" ***************** F A I L E D *************************");
                    assert(true);
                    break;
                }
            }
        }
    }
}
//
// End of file - Main.java

玩得开心。:)


4

每个元素可以处于七个位置之一。要描述一个元素的位置,您将需要三个位。这意味着您可以将所有元素的位置存储在32位值中。这远非有效,因为这种表示方法甚至允许所有元素都位于同一位置,但是我认为位屏蔽应该相当快。

但是,拥有8个以上职位时,您将需要更多漂亮的东西。


这是假设OP不在乎枚举实际上是从0到5039,对不对?如果可以的话,这似乎是一个很好的解决方案。
Troubadour

4

这恰好是J中的内置函数:

   A. 1 2 3 4 5 6 7
0
   0 A. 1 2 3 4 5 6 7
1 2 3 4 5 6 7

   ?!7
5011
   5011 A. 1 2 3 4 5 6 7
7 6 4 5 1 3 2
   A. 7 6 4 5 1 3 2
5011

2

您可以使用递归算法对排列进行编码。如果N置换(数字{0,..,N-1}的某些顺序)的形式为{x,...},则将其编码为x + N *(N-1)的编码-在数字{0,N-1}-{x}上用“ ...”表示的排列。听起来像是满嘴,下面是一些代码:

// perm[0]..perm[n-1] must contain the numbers in {0,..,n-1} in any order.
int permToNumber(int *perm, int n) {
  // base case
  if (n == 1) return 0;

  // fix up perm[1]..perm[n-1] to be a permutation on {0,..,n-2}.
  for (int i = 1; i < n; i++) {
    if (perm[i] > perm[0]) perm[i]--;
  }

  // recursively compute
  return perm[0] + n * permToNumber(perm + 1, n - 1);
}

// number must be >=0, < n!
void numberToPerm(int number, int *perm, int n) {
  if (n == 1) {
    perm[0] = 0;
    return;
  }
  perm[0] = number % n;
  numberToPerm(number / n, perm + 1, n - 1);

  // fix up perm[1] .. perm[n-1]
  for (int i = 1; i < n; i++) {
    if (perm[i] >= perm[0]) perm[i]++;
  }
}

该算法为O(n ^ 2)。如果有人拥有O(n)算法,则可获得奖励积分。


1

多么有趣的问题!

如果所有元素都是数字,则可能需要考虑将它们从字符串转换为实际数字。然后,您可以通过排列所有排列来排列所有排列,并将它们放置在数组中。在那之后,您将可以使用那里的各种搜索算法中的任何一种。


1

我以前的答案很匆忙(已删除),但确实有实际答案。它由一个类似的概念factoradic提供,并且与排列有关(我的回答与组合有关,对于这种混淆,我深表歉意)。我讨厌只发布维基百科链接,但是由于某种原因,我之前写的文章难以理解。因此,如果需要,我可以稍后对此进行扩展。


1

有关于这方面的书。抱歉,但我不记得它的名称了(您很可能会从Wikipedia中找到它)。但无论如何,我写了该枚举系统的python实现:http : //kks.cabal.fi/Kombinaattori 其中一些是芬兰语的,但只需复制代码和名称变量即可。


0

我有这个确切的问题,以为我会提供我的Python解决方案。是O(n ^ 2)。

import copy

def permute(string, num):
    ''' generates a permutation '''
    def build_s(factoradic): # Build string from factoradic in list form
        string0 = copy.copy(string)
        n = []
        for i in range(len(factoradic)):
            n.append(string0[factoradic[i]])
            del string0[factoradic[i]]
        return n

    f = len(string)
    factoradic = []
    while(f != 0): # Generate factoradic number list
        factoradic.append(num % f)
        num = (num - factoradic[-1])//f
        f -= 1

    return build_s(factoradic)

s = set()
# Print 120 permutations of this string
for i in range(120):
    m = permute(list('abcde'), i)
    s.add(''.join(m))

print(len(s)) # Check that we have 120 unique permutations

这很简单。生成数字的因式表示后,我只需从字符串中选择和删除字符。从字符串中删除是为什么这是O(n ^ 2)解决方案的原因。

Antoine的解决方案具有更好的性能。


-1

一个相关的问题是计算逆置换,当仅知道置换数组时,该置换将把置换后的向量恢复到原始顺序。这是O(n)代码(在PHP中):

// Compute the inverse of a permutation
function GetInvPerm($Perm)
    {
    $n=count($Perm);
    $InvPerm=[];
    for ($i=0; $i<$n; ++$i)
        $InvPerm[$Perm[$i]]=$i;
    return $InvPerm;
    } // GetInvPerm

David Spector春季软件

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.