如何检查平面清单中是否存在重复项?


185

例如,给定列表['one', 'two', 'one'],算法应返回True,而给定['one', 'two', 'three']应返回False

Answers:


398

使用set()删除重复,如果所有的值是可哈希

>>> your_list = ['one', 'two', 'one']
>>> len(your_list) != len(set(your_list))
True

17
在阅读本文之前,我尝试过your_list!= list(set(your_list)),因为元素的顺序会发生变化,所以该方法不起作用。使用len是解决此问题的好方法
igniteflow 2012年

1
通常不适用于浮点数组。请
Manas Dogra

54

仅推荐用于名单:

any(thelist.count(x) > 1 for x in thelist)

难道不是一个长长的清单上使用-它可以采取的时间与列表中的项目的数量!

对于带有可哈希项(字符串,数字和&c)的较长列表:

def anydup(thelist):
  seen = set()
  for x in thelist:
    if x in seen: return True
    seen.add(x)
  return False

如果您的项目不可散列(子列表,字典等),则它会变得更毛茸茸,尽管如果它们至少具有可比性,仍然可能会获得O(N logN)。但是您需要了解或测试项目的特性(是否可哈希,是否可比较)才能获得最佳性能-哈希值为O(N),非哈希值可比较项为O(N log N),否则它下降到O(N平方),对此无能为力:-(。


21
Denis Otkidach提供了一种解决方案,您只需从列表中构建一个新集合,然后检查其长度即可。它的优点是让Python内部的C代码可以完成繁重的工作。您的解决方案以Python代码循环,但具有发现单个匹配项时发生短路的优势。如果很可能该列表可能没有重复项,那么我喜欢Denis Otkidach的版本,但是如果很可能在列表的早期有一个重复项,则此解决方案会更好。
steveha,2009年

1
即使我认为Denis拥有更整洁的解决方案,也值得详细说明。
Steve314,2009年

@steveha-过早的优化?
2009年

@ Steve314,什么过早的优化?我会以Denis Otkidach编写它的方式编写它,所以我试图理解为什么Python Cookbook的Alex Martelli编写它的方式有所不同。经过一番思考,我意识到亚历克斯(Alex)的版本存在短路,并且我就这些差异发表了一些想法。您如何从讨论差异到过早的优化,这是万恶之源?
09年

3
如果项目是可散列的,则设置的解决方案会更直接,而且,按照我的表示方式,它会更快(知道答案后立即退出-“短路”,史蒂夫(Steveha)说)。构建您建议的字典(作为collections.Counter最快)当然要慢得多(需要all计数全部为1)。您还提到过,具有所有值True的字典是a的荒谬,无用的ated肿模仿set,没有任何附加值。Big-O并不是编程中的全部。
Alex Martelli'3

12

这很古老,但是这里的答案使我得出了一个略有不同的解决方案。如果您想滥用理解力,则可以通过这种方式进行短路。

xs = [1, 2, 1]
s = set()
any(x in s or s.add(x) for x in xs)
# You can use a similar approach to actually retrieve the duplicates.
s = set()
duplicates = set(x for x in xs if x in s or s.add(x))

9

如果您喜欢函数式编程风格,那么这里是一个有用的函数,可以使用doctest进行自我记录和测试。

def decompose(a_list):
    """Turns a list into a set of all elements and a set of duplicated elements.

    Returns a pair of sets. The first one contains elements
    that are found at least once in the list. The second one
    contains elements that appear more than once.

    >>> decompose([1,2,3,5,3,2,6])
    (set([1, 2, 3, 5, 6]), set([2, 3]))
    """
    return reduce(
        lambda (u, d), o : (u.union([o]), d.union(u.intersection([o]))),
        a_list,
        (set(), set()))

if __name__ == "__main__":
    import doctest
    doctest.testmod()

在这里,您可以通过检查返回的对中的第二个元素是否为空来测试唯一性:

def is_set(l):
    """Test if there is no duplicate element in l.

    >>> is_set([1,2,3])
    True
    >>> is_set([1,2,1])
    False
    >>> is_set([])
    True
    """
    return not decompose(l)[1]

请注意,这是无效的,因为您正在显式构造分解。但是,在使用reduce的过程中,您可以得出相当于5(但效率稍低)的答案5:

def is_set(l):
    try:
        def func(s, o):
            if o in s:
                raise Exception
            return s.union([o])
        reduce(func, l, set())
        return True
    except:
        return False

应该先阅读相关问题。这在描述stackoverflow.com/questions/1723072/...
泽维尔Decoret

1
它向我的lambda函数decompose()抛出“语法无效”错误
raffaem,

这是因为在lambda参数列表中解包已在Python 3.x中删除。
MSeifert

5

我认为比较此处介绍的不同解决方案的时间会很有用。为此,我使用了自己的库simple_benchmark

在此处输入图片说明

因此,确实对于这种情况,Denis Otkidach的解决方案是最快的。

其中一些方法还显示出更陡峭的曲线,这些方法随元素数量呈二次方缩放(Alex Martellis第一解决方案,wjandrea和Xavier Decorets解决方案)。值得一提的是,Keiku提供的熊猫解决方案具有很大的常数。但是对于较大的列表,它几乎赶上了其他解决方案。

并且如果副本在第一位置。这对于查看哪些解决方案短路很有用:

在此处输入图片说明

这里有几种方法不会短路:Kaiku,Frank,Xavier_Decoret(第一个解决方案),Turn,Alex Martelli(第一个解决方案)以及Denis Otkidach提出的方法(在无重复情况下最快)。

我在自己的库中包含了一个函数: iteration_utilities.all_distinct在没有重复的情况下,它可以与最快的解决方案竞争,并且可以在开始重复的情况下以恒定的时间执行(尽管速度不是最快)。

基准测试代码:

from collections import Counter
from functools import reduce

import pandas as pd
from simple_benchmark import BenchmarkBuilder
from iteration_utilities import all_distinct

b = BenchmarkBuilder()

@b.add_function()
def Keiku(l):
    return pd.Series(l).duplicated().sum() > 0

@b.add_function()
def Frank(num_list):
    unique = []
    dupes = []
    for i in num_list:
        if i not in unique:
            unique.append(i)
        else:
            dupes.append(i)
    if len(dupes) != 0:
        return False
    else:
        return True

@b.add_function()
def wjandrea(iterable):
    seen = []
    for x in iterable:
        if x in seen:
            return True
        seen.append(x)
    return False

@b.add_function()
def user(iterable):
    clean_elements_set = set()
    clean_elements_set_add = clean_elements_set.add

    for possible_duplicate_element in iterable:

        if possible_duplicate_element in clean_elements_set:
            return True

        else:
            clean_elements_set_add( possible_duplicate_element )

    return False

@b.add_function()
def Turn(l):
    return Counter(l).most_common()[0][1] > 1

def getDupes(l):
    seen = set()
    seen_add = seen.add
    for x in l:
        if x in seen or seen_add(x):
            yield x

@b.add_function()          
def F1Rumors(l):
    try:
        if next(getDupes(l)): return True    # Found a dupe
    except StopIteration:
        pass
    return False

def decompose(a_list):
    return reduce(
        lambda u, o : (u[0].union([o]), u[1].union(u[0].intersection([o]))),
        a_list,
        (set(), set()))

@b.add_function()
def Xavier_Decoret_1(l):
    return not decompose(l)[1]

@b.add_function()
def Xavier_Decoret_2(l):
    try:
        def func(s, o):
            if o in s:
                raise Exception
            return s.union([o])
        reduce(func, l, set())
        return True
    except:
        return False

@b.add_function()
def pyrospade(xs):
    s = set()
    return any(x in s or s.add(x) for x in xs)

@b.add_function()
def Alex_Martelli_1(thelist):
    return any(thelist.count(x) > 1 for x in thelist)

@b.add_function()
def Alex_Martelli_2(thelist):
    seen = set()
    for x in thelist:
        if x in seen: return True
        seen.add(x)
    return False

@b.add_function()
def Denis_Otkidach(your_list):
    return len(your_list) != len(set(your_list))

@b.add_function()
def MSeifert04(l):
    return not all_distinct(l)

对于参数:


# No duplicate run
@b.add_arguments('list size')
def arguments():
    for exp in range(2, 14):
        size = 2**exp
        yield size, list(range(size))

# Duplicate at beginning run
@b.add_arguments('list size')
def arguments():
    for exp in range(2, 14):
        size = 2**exp
        yield size, [0, *list(range(size)]

# Running and plotting
r = b.run()
r.plot()

供参考:all_distinct函数用C编写
用户

5

我最近回答了一个相关问题,以建立所有重复项,使用生成器在列表中。它的优势在于,如果仅用于建立“是否存在重复项”,则只需要获取第一项,其余项就可以忽略,这是最终的捷径。

这是一个有趣的基于集合的方法,我直接从moooeeeep改编而成

def getDupes(l):
    seen = set()
    seen_add = seen.add
    for x in l:
        if x in seen or seen_add(x):
            yield x

因此,将有一份完整的受骗名单list(getDupes(etc))。为了简单地测试“是否”存在欺骗,应将其包装如下:

def hasDupes(l):
    try:
        if getDupes(l).next(): return True    # Found a dupe
    except StopIteration:
        pass
    return False

这样可以很好地扩展规模,并在列表中的任何位置都提供一致的操作时间-我测试了最多100万个条目的列表。如果您对数据有所了解,特别是在上半年可能会出现重复数据,或者是其他使您歪曲要求的事情(例如需要获取实际的重复数据),那么有几个真正可以替代的重复数据定位器可能跑赢大市。我推荐的两个是...

基于简单dict的方法,可读性强:

def getDupes(c):
    d = {}
    for i in c:
        if i in d:
            if d[i]:
                yield i
                d[i] = False
        else:
            d[i] = True

利用排序列表上的itertools(本质上是ifilter / izip / tee),如果您要获取所有重复对象,则效率非常高,尽管获取第一个对象并没有那么快:

def getDupes(c):
    a, b = itertools.tee(sorted(c))
    next(b, None)
    r = None
    for k, g in itertools.ifilter(lambda x: x[0]==x[1], itertools.izip(a, b)):
        if k != r:
            yield k
            r = k

这些是我尝试使用完整重复列表的方法中表现最好的,第一个重复出现在从开始到中间的1m元素列表中的任何位置。令人惊讶的是,排序步骤增加了很少的开销。您的里程可能会有所不同,但这是我的具体计时结果:

Finding FIRST duplicate, single dupe places "n" elements in to 1m element array

Test set len change :        50 -  . . . . .  -- 0.002
Test in dict        :        50 -  . . . . .  -- 0.002
Test in set         :        50 -  . . . . .  -- 0.002
Test sort/adjacent  :        50 -  . . . . .  -- 0.023
Test sort/groupby   :        50 -  . . . . .  -- 0.026
Test sort/zip       :        50 -  . . . . .  -- 1.102
Test sort/izip      :        50 -  . . . . .  -- 0.035
Test sort/tee/izip  :        50 -  . . . . .  -- 0.024
Test moooeeeep      :        50 -  . . . . .  -- 0.001 *
Test iter*/sorted   :        50 -  . . . . .  -- 0.027

Test set len change :      5000 -  . . . . .  -- 0.017
Test in dict        :      5000 -  . . . . .  -- 0.003 *
Test in set         :      5000 -  . . . . .  -- 0.004
Test sort/adjacent  :      5000 -  . . . . .  -- 0.031
Test sort/groupby   :      5000 -  . . . . .  -- 0.035
Test sort/zip       :      5000 -  . . . . .  -- 1.080
Test sort/izip      :      5000 -  . . . . .  -- 0.043
Test sort/tee/izip  :      5000 -  . . . . .  -- 0.031
Test moooeeeep      :      5000 -  . . . . .  -- 0.003 *
Test iter*/sorted   :      5000 -  . . . . .  -- 0.031

Test set len change :     50000 -  . . . . .  -- 0.035
Test in dict        :     50000 -  . . . . .  -- 0.023
Test in set         :     50000 -  . . . . .  -- 0.023
Test sort/adjacent  :     50000 -  . . . . .  -- 0.036
Test sort/groupby   :     50000 -  . . . . .  -- 0.134
Test sort/zip       :     50000 -  . . . . .  -- 1.121
Test sort/izip      :     50000 -  . . . . .  -- 0.054
Test sort/tee/izip  :     50000 -  . . . . .  -- 0.045
Test moooeeeep      :     50000 -  . . . . .  -- 0.019 *
Test iter*/sorted   :     50000 -  . . . . .  -- 0.055

Test set len change :    500000 -  . . . . .  -- 0.249
Test in dict        :    500000 -  . . . . .  -- 0.145
Test in set         :    500000 -  . . . . .  -- 0.165
Test sort/adjacent  :    500000 -  . . . . .  -- 0.139
Test sort/groupby   :    500000 -  . . . . .  -- 1.138
Test sort/zip       :    500000 -  . . . . .  -- 1.159
Test sort/izip      :    500000 -  . . . . .  -- 0.126
Test sort/tee/izip  :    500000 -  . . . . .  -- 0.120 *
Test moooeeeep      :    500000 -  . . . . .  -- 0.131
Test iter*/sorted   :    500000 -  . . . . .  -- 0.157

.next()第二个代码块中的调用在Python 3.x上不起作用。我认为next(getDupes(l))应该跨Python版本工作,因此更改它可能很有意义。
MSeifert

ifilterìzip可以通过内置的简单更换filter,并zip在Python 3.x的
MSeifert

@MSeifert该解决方案按编写的方式适用于python 2.x,是的,对于py3,您可以直接使用filter和map ...,但是在py2代码库中使用py3解决方案的人不会获得好处,因为它无法作为发电机。在这种情况下,显式比隐式更好;)
F1Rumors

3

另一种简洁的方法是使用Counter

要确定原始列表中是否有重复项:

from collections import Counter

def has_dupes(l):
    # second element of the tuple has number of repetitions
    return Counter(l).most_common()[0][1] > 1

或获取具有重复项的列表:

def get_dupes(l):
    return [k for k, v in Counter(l).items() if v > 1]

2
my_list = ['one', 'two', 'one']

duplicates = []

for value in my_list:
  if my_list.count(value) > 1:
    if value not in duplicates:
      duplicates.append(value)

print(duplicates) //["one"]

1

我发现这是最好的性能,因为它会在发现第一个重复项时使操作短路,因此该算法具有时间和空间复杂度O(n),其中n是列表的长度:

def has_duplicated_elements(iterable):
    """ Given an `iterable`, return True if there are duplicated entries. """
    clean_elements_set = set()
    clean_elements_set_add = clean_elements_set.add

    for possible_duplicate_element in iterable:

        if possible_duplicate_element in clean_elements_set:
            return True

        else:
            clean_elements_set_add( possible_duplicate_element )

    return False

0

我真的不知道幕后花絮是什么,所以我只想保持简单。

def dupes(num_list):
    unique = []
    dupes = []
    for i in num_list:
        if i not in unique:
            unique.append(i)
        else:
            dupes.append(i)
    if len(dupes) != 0:
        return False
    else:
        return True

0

一个更简单的解决方案如下。只需使用pandas .duplicated()方法检查对/错,然后求和。另请参阅 pandas.Series.duplicated — pandas 0.24.1文档

import pandas as pd

def has_duplicated(l):
    return pd.Series(l).duplicated().sum() > 0

print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False

0

如果列表包含不可散列的项目,则可以使用Alex Martelli的解决方案,但使用列表而不是集合,尽管对于较大的输入而言,速度较慢:O(N ^ 2)。

def has_duplicates(iterable):
    seen = []
    for x in iterable:
        if x in seen:
            return True
        seen.append(x)
    return False

0

为了简单起见,我使用了pyrospade的方法,并在不区分大小写的Windows注册表的简短列表中对其进行了一些修改。

如果将原始PATH值字符串拆分为单独的路径,则可以使用以下命令删除所有“空”路径(空字符串或仅包含空格的字符串):

PATH_nonulls = [s for s in PATH if s.strip()]

def HasDupes(aseq) :
    s = set()
    return any(((x.lower() in s) or s.add(x.lower())) for x in aseq)

def GetDupes(aseq) :
    s = set()
    return set(x for x in aseq if ((x.lower() in s) or s.add(x.lower())))

def DelDupes(aseq) :
    seen = set()
    return [x for x in aseq if (x.lower() not in seen) and (not seen.add(x.lower()))]

原始PATH同时具有“空”条目和重复条目,以进行测试:

[list]  Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH[list]  Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment
  1  C:\Python37\
  2
  3
  4  C:\Python37\Scripts\
  5  c:\python37\
  6  C:\Program Files\ImageMagick-7.0.8-Q8
  7  C:\Program Files (x86)\poppler\bin
  8  D:\DATA\Sounds
  9  C:\Program Files (x86)\GnuWin32\bin
 10  C:\Program Files (x86)\Intel\iCLS Client\
 11  C:\Program Files\Intel\iCLS Client\
 12  D:\DATA\CCMD\FF
 13  D:\DATA\CCMD
 14  D:\DATA\UTIL
 15  C:\
 16  D:\DATA\UHELP
 17  %SystemRoot%\system32
 18
 19
 20  D:\DATA\CCMD\FF%SystemRoot%
 21  D:\DATA\Sounds
 22  %SystemRoot%\System32\Wbem
 23  D:\DATA\CCMD\FF
 24
 25
 26  c:\
 27  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
 28

空路径已被删除,但仍具有重复项,例如(1,3)和(13,20):

    [list]  Null paths removed from HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
  1  C:\Python37\
  2  C:\Python37\Scripts\
  3  c:\python37\
  4  C:\Program Files\ImageMagick-7.0.8-Q8
  5  C:\Program Files (x86)\poppler\bin
  6  D:\DATA\Sounds
  7  C:\Program Files (x86)\GnuWin32\bin
  8  C:\Program Files (x86)\Intel\iCLS Client\
  9  C:\Program Files\Intel\iCLS Client\
 10  D:\DATA\CCMD\FF
 11  D:\DATA\CCMD
 12  D:\DATA\UTIL
 13  C:\
 14  D:\DATA\UHELP
 15  %SystemRoot%\system32
 16  D:\DATA\CCMD\FF%SystemRoot%
 17  D:\DATA\Sounds
 18  %SystemRoot%\System32\Wbem
 19  D:\DATA\CCMD\FF
 20  c:\
 21  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\

最后,这些假人已被删除:

[list]  Massaged path list from in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
  1  C:\Python37\
  2  C:\Python37\Scripts\
  3  C:\Program Files\ImageMagick-7.0.8-Q8
  4  C:\Program Files (x86)\poppler\bin
  5  D:\DATA\Sounds
  6  C:\Program Files (x86)\GnuWin32\bin
  7  C:\Program Files (x86)\Intel\iCLS Client\
  8  C:\Program Files\Intel\iCLS Client\
  9  D:\DATA\CCMD\FF
 10  D:\DATA\CCMD
 11  D:\DATA\UTIL
 12  C:\
 13  D:\DATA\UHELP
 14  %SystemRoot%\system32
 15  D:\DATA\CCMD\FF%SystemRoot%
 16  %SystemRoot%\System32\Wbem
 17  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.