您如何编写自己的函数以查找最精确的整数平方根?
对其进行谷歌搜索之后,我发现了它(从其原始链接存档),但是首先,我没有完全了解它,其次,它也是近似的。
假设平方根是最接近的整数(实际根)或浮点数。
Answers:
以下计算N> 0的floor(sqrt(N)):
x = 2^ceil(numbits(N)/2)
loop:
y = floor((x + floor(N/x))/2)
if y >= x
return x
x = y
这是Crandall&Pomerance的“素数:计算视角”中给出的牛顿方法的一种形式。之所以要使用此版本,是因为知道他们在做什么的人都证明了它完全收敛于平方根的底面,而且它很简单,因此实现错误的可能性很小。它也很快(尽管可以构造甚至更快的算法,但是正确地执行则要复杂得多)。对于很小的N,正确实现的二进制搜索可能会更快,但您也可以在其中使用查找表。
要舍入到最接近的整数,只需使用上述算法计算t = floor(sqrt(4N))。如果设置了t的最低有效位,则选择x =(t + 1)/ 2; 否则选择t / 2。注意,这四舍五入。您还可以通过查看余数是否为非零(即t ^ 2 == 4N)来舍入(或舍入为偶数)。
请注意,您不需要使用浮点运算。实际上,您不应该这样。该算法应完全使用整数来实现(特别是floor()函数仅指示应使用常规整数除法)。
S
并且S
有K
数字。然后10^K <= S <= 10^{K+1}
。这意味着10^(2K) <= S**2 < 10^(2k+2)
。就是说,如果要查找的平方根N
,则其长度在的一半的长度N
和一个大的数字之间。因此,后者是一个很好的起点。该行执行此操作,但以2为基数。
根据您的需求,可以使用简单的分而治之策略。它的收敛速度不会像其他方法那样快,但是对于新手来说可能更容易理解。另外,由于它是O(log n)算法(每次迭代将搜索空间减半),所以32位浮点数的最坏情况是32次迭代。
假设您想要62.104的平方根。您选择一个介于0和那个之间的值,并将其平方。如果平方比您的数字高,则需要专注于小于中点的数字。如果太低,则专注于较高的那些。
使用真实的数学运算,您可以将搜索空间永远永远分为两部分(如果没有合理的平方根)。实际上,计算机最终将失去精度,您将获得近似值。以下C程序说明了这一点:
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {
float val, low, high, mid, oldmid, midsqr;
int step = 0;
// Get argument, force to non-negative.
if (argc < 2) {
printf ("Usage: sqrt <number>\n");
return 1;
}
val = fabs (atof (argv[1]));
// Set initial bounds and print heading.
low = 0;
high = mid = val;
oldmid = -1;
printf ("%4s %10s %10s %10s %10s %10s %s\n",
"Step", "Number", "Low", "High", "Mid", "Square", "Result");
// Keep going until accurate enough.
while (fabs(oldmid - mid) >= 0.00001) {
oldmid = mid;
// Get midpoint and see if we need lower or higher.
mid = (high + low) / 2;
midsqr = mid * mid;
printf ("%4d %10.4f %10.4f %10.4f %10.4f %10.4f ",
++step, val, low, high, mid, midsqr);
if (mid * mid > val) {
high = mid;
printf ("- too high\n");
} else {
low = mid;
printf ("- too low\n");
}
}
// Desired accuracy reached, print it.
printf ("sqrt(%.4f) = %.4f\n", val, mid);
return 0;
}
这是几次运行,因此您希望了解它的工作原理。对于77:
pax> sqrt 77
Step Number Low High Mid Square Result
1 77.0000 0.0000 77.0000 38.5000 1482.2500 - too high
2 77.0000 0.0000 38.5000 19.2500 370.5625 - too high
3 77.0000 0.0000 19.2500 9.6250 92.6406 - too high
4 77.0000 0.0000 9.6250 4.8125 23.1602 - too low
5 77.0000 4.8125 9.6250 7.2188 52.1104 - too low
6 77.0000 7.2188 9.6250 8.4219 70.9280 - too low
7 77.0000 8.4219 9.6250 9.0234 81.4224 - too high
8 77.0000 8.4219 9.0234 8.7227 76.0847 - too low
9 77.0000 8.7227 9.0234 8.8730 78.7310 - too high
10 77.0000 8.7227 8.8730 8.7979 77.4022 - too high
11 77.0000 8.7227 8.7979 8.7603 76.7421 - too low
12 77.0000 8.7603 8.7979 8.7791 77.0718 - too high
13 77.0000 8.7603 8.7791 8.7697 76.9068 - too low
14 77.0000 8.7697 8.7791 8.7744 76.9893 - too low
15 77.0000 8.7744 8.7791 8.7767 77.0305 - too high
16 77.0000 8.7744 8.7767 8.7755 77.0099 - too high
17 77.0000 8.7744 8.7755 8.7749 76.9996 - too low
18 77.0000 8.7749 8.7755 8.7752 77.0047 - too high
19 77.0000 8.7749 8.7752 8.7751 77.0022 - too high
20 77.0000 8.7749 8.7751 8.7750 77.0009 - too high
21 77.0000 8.7749 8.7750 8.7750 77.0002 - too high
22 77.0000 8.7749 8.7750 8.7750 76.9999 - too low
23 77.0000 8.7750 8.7750 8.7750 77.0000 - too low
sqrt(77.0000) = 8.7750
对于62.104:
pax> sqrt 62.104
Step Number Low High Mid Square Result
1 62.1040 0.0000 62.1040 31.0520 964.2267 - too high
2 62.1040 0.0000 31.0520 15.5260 241.0567 - too high
3 62.1040 0.0000 15.5260 7.7630 60.2642 - too low
4 62.1040 7.7630 15.5260 11.6445 135.5944 - too high
5 62.1040 7.7630 11.6445 9.7037 94.1628 - too high
6 62.1040 7.7630 9.7037 8.7334 76.2718 - too high
7 62.1040 7.7630 8.7334 8.2482 68.0326 - too high
8 62.1040 7.7630 8.2482 8.0056 64.0895 - too high
9 62.1040 7.7630 8.0056 7.8843 62.1621 - too high
10 62.1040 7.7630 7.8843 7.8236 61.2095 - too low
11 62.1040 7.8236 7.8843 7.8540 61.6849 - too low
12 62.1040 7.8540 7.8843 7.8691 61.9233 - too low
13 62.1040 7.8691 7.8843 7.8767 62.0426 - too low
14 62.1040 7.8767 7.8843 7.8805 62.1024 - too low
15 62.1040 7.8805 7.8843 7.8824 62.1323 - too high
16 62.1040 7.8805 7.8824 7.8815 62.1173 - too high
17 62.1040 7.8805 7.8815 7.8810 62.1098 - too high
18 62.1040 7.8805 7.8810 7.8807 62.1061 - too high
19 62.1040 7.8805 7.8807 7.8806 62.1042 - too high
20 62.1040 7.8805 7.8806 7.8806 62.1033 - too low
21 62.1040 7.8806 7.8806 7.8806 62.1038 - too low
22 62.1040 7.8806 7.8806 7.8806 62.1040 - too high
23 62.1040 7.8806 7.8806 7.8806 62.1039 - too high
sqrt(62.1040) = 7.8806
对于49:
pax> sqrt 49
Step Number Low High Mid Square Result
1 49.0000 0.0000 49.0000 24.5000 600.2500 - too high
2 49.0000 0.0000 24.5000 12.2500 150.0625 - too high
3 49.0000 0.0000 12.2500 6.1250 37.5156 - too low
4 49.0000 6.1250 12.2500 9.1875 84.4102 - too high
5 49.0000 6.1250 9.1875 7.6562 58.6182 - too high
6 49.0000 6.1250 7.6562 6.8906 47.4807 - too low
7 49.0000 6.8906 7.6562 7.2734 52.9029 - too high
8 49.0000 6.8906 7.2734 7.0820 50.1552 - too high
9 49.0000 6.8906 7.0820 6.9863 48.8088 - too low
10 49.0000 6.9863 7.0820 7.0342 49.4797 - too high
11 49.0000 6.9863 7.0342 7.0103 49.1437 - too high
12 49.0000 6.9863 7.0103 6.9983 48.9761 - too low
13 49.0000 6.9983 7.0103 7.0043 49.0598 - too high
14 49.0000 6.9983 7.0043 7.0013 49.0179 - too high
15 49.0000 6.9983 7.0013 6.9998 48.9970 - too low
16 49.0000 6.9998 7.0013 7.0005 49.0075 - too high
17 49.0000 6.9998 7.0005 7.0002 49.0022 - too high
18 49.0000 6.9998 7.0002 7.0000 48.9996 - too low
19 49.0000 7.0000 7.0002 7.0001 49.0009 - too high
20 49.0000 7.0000 7.0001 7.0000 49.0003 - too high
21 49.0000 7.0000 7.0000 7.0000 49.0000 - too low
22 49.0000 7.0000 7.0000 7.0000 49.0001 - too high
23 49.0000 7.0000 7.0000 7.0000 49.0000 - too high
sqrt(49.0000) = 7.0000
一种简单(但不是很快)的方法来计算X的平方根:
squareroot(x)
if x<0 then Error
a = 1
b = x
while (abs(a-b)>ErrorMargin)
a = (a+b)/2
b = x/a
endwhile
return a;
示例:squareroot(70000)
a b
1 70000
35001 2
17502 4
8753 8
4381 16
2199 32
1116 63
590 119
355 197
276 254
265 264
如您所见,它为平方根定义了上下边界,并缩小了边界直到其大小可以接受为止。
有许多更有效的方法,但是这一方法说明了该过程并且易于理解。
请注意,如果使用整数,则将Errormargin设置为1,否则会出现无限循环。
do … while(a-b>ErrorMargin)
,您可以避免使用abs()函数,并且可以使其速度更快
让我指出一个非常有趣的方法来计算平方根倒数1 / sqrt(x),这在游戏设计领域是一个传奇,因为它令人难以置信地快。或等待,请阅读以下文章:
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
PS:我知道您只想要平方根,但是地震的优雅克服了我的所有阻力:)
顺便说一句,上述文章还在某处谈论了无聊的牛顿-拉夫森逼近。
当然是近似值;这就是带有浮点数的数学的工作原理。
无论如何,标准方法是使用牛顿法。这与使用泰勒级数大约相同,另一种方式马上想到。
f(x)=x^2
在任何地方都是凸的,因此Newton的方法与起点无关,因此效果很好。
#!/usr/bin/env python
import decimal
def sqrt(n):
assert n > 0
with decimal.localcontext() as ctx:
ctx.prec += 2 # increase precision to minimize round off error
x, prior = decimal.Decimal(n), None
while x != prior:
prior = x
x = (x + n/x) / 2 # quadratic convergence
return +x # round in a global context
decimal.getcontext().prec = 80 # desirable precision
r = sqrt(12345)
print r
print r == decimal.Decimal(12345).sqrt()
输出:
111.10805551354051124500443874307524148991137745969772997648567316178259031751676
True
这是Facebook等提出的常见面试问题。在面试中使用牛顿法不是一个好主意。如果在您不太了解牛顿方法时,面试官问您呢?
我提供了Java中基于二进制搜索的解决方案,相信每个人都可以理解。
public int sqrt(int x) {
if(x < 0) return -1;
if(x == 0 || x == 1) return x;
int lowerbound = 1;
int upperbound = x;
int root = lowerbound + (upperbound - lowerbound)/2;
while(root > x/root || root+1 <= x/(root+1)){
if(root > x/root){
upperbound = root;
} else {
lowerbound = root;
}
root = lowerbound + (upperbound - lowerbound)/2;
}
return root;
}
您可以在此处测试我的代码:leetcode:sqrt(x)
找到有关整数平方根的出色文章。
这是一个略有改进的版本,它在此处提供:
unsigned long sqrt(unsigned long a){
int i;
unsigned long rem = 0;
unsigned long root = 0;
for (i = 0; i < 16; i++){
root <<= 1;
rem = (rem << 2) | (a >> 30);
a <<= 2;
if(root < rem){
root++;
rem -= root;
root++;
}
}
return root >> 1;
}
我在学校学习过一种算法,可以用来计算精确的平方根(如果根是非理性数,则可以计算出任意大的精度)。绝对比牛顿的算法慢,但这是准确的。假设您要计算531.3025的平方根
首先是将您的数字从小数点开始分成2位数字的组:
{5} {31}。{30} {25}
然后:
1)为第一组找到最接近或等于平方根的平方根。第一组的实际平方根:sqrt({5})> =2。此平方根是最终答案的第一位。让我们将已经找到的最终平方根的数字表示为B。因此,在B = 2的时刻
。2)接下来计算{5}与B ^ 2之间的差:5-4 =1。3
)对于所有后续2位数字组执行以下操作:
将余数乘以100,然后将其加到第二组:100 + 31 = 131。
查找X-根的下一位,例如131> =(((B * 20)+ X)* X。X =3。43* 3 = 129 <131。现在B =23。同样因为小数点左边没有2位数字组,所以您找到了最终根的所有整数位。
4)对{30}和{25}重复相同的操作。因此,您有:
{30}:131-129 =2。2* 100 + 30 = 230> =(23 * 2 * 10 + X)* X-> X = 0-> B = 23.0
{25}:230- 0 = 230. 230 * 100 + 25 = 23025. 23025> =(230 * 2 * 10 + X)* X-> X = 5-> B = 23.05
最终结果= 23.05。
这种算法看起来很复杂,但是如果您使用与您在学校学习过的“长除法”相同的符号在纸上进行处理,则要简单得多,除了您不进行除法而是计算平方根外。
// Fastest way I found, an (extreme) C# unrolled version of:
// http://www.hackersdelight.org/hdcodetxt/isqrt.c.txt (isqrt4)
// It's quite a lot of code, basically a binary search (the "if" statements)
// followed by an unrolled loop (the labels).
// Most important: it's fast, twice as fast as "Math.Sqrt".
// On my pc: Math.Sqrt ~35 ns, sqrt <16 ns (mean <14 ns)
private static uint sqrt(uint x)
{
uint y, z;
if (x < 1u << 16)
{
if (x < 1u << 08)
{
if (x < 1u << 04) return x < 1u << 02 ? x + 3u >> 2 : x + 15u >> 3;
else
{
if (x < 1u << 06)
{ y = 1u << 03; x -= 1u << 04; if (x >= 5u << 02) { x -= 5u << 02; y |= 1u << 02; } goto L0; }
else
{ y = 1u << 05; x -= 1u << 06; if (x >= 5u << 04) { x -= 5u << 04; y |= 1u << 04; } goto L1; }
}
}
else // slower (on my pc): .... y = 3u << 04; } goto L1; }
{
if (x < 1u << 12)
{
if (x < 1u << 10)
{ y = 1u << 07; x -= 1u << 08; if (x >= 5u << 06) { x -= 5u << 06; y |= 1u << 06; } goto L2; }
else
{ y = 1u << 09; x -= 1u << 10; if (x >= 5u << 08) { x -= 5u << 08; y |= 1u << 08; } goto L3; }
}
else
{
if (x < 1u << 14)
{ y = 1u << 11; x -= 1u << 12; if (x >= 5u << 10) { x -= 5u << 10; y |= 1u << 10; } goto L4; }
else
{ y = 1u << 13; x -= 1u << 14; if (x >= 5u << 12) { x -= 5u << 12; y |= 1u << 12; } goto L5; }
}
}
}
else
{
if (x < 1u << 24)
{
if (x < 1u << 20)
{
if (x < 1u << 18)
{ y = 1u << 15; x -= 1u << 16; if (x >= 5u << 14) { x -= 5u << 14; y |= 1u << 14; } goto L6; }
else
{ y = 1u << 17; x -= 1u << 18; if (x >= 5u << 16) { x -= 5u << 16; y |= 1u << 16; } goto L7; }
}
else
{
if (x < 1u << 22)
{ y = 1u << 19; x -= 1u << 20; if (x >= 5u << 18) { x -= 5u << 18; y |= 1u << 18; } goto L8; }
else
{ y = 1u << 21; x -= 1u << 22; if (x >= 5u << 20) { x -= 5u << 20; y |= 1u << 20; } goto L9; }
}
}
else
{
if (x < 1u << 28)
{
if (x < 1u << 26)
{ y = 1u << 23; x -= 1u << 24; if (x >= 5u << 22) { x -= 5u << 22; y |= 1u << 22; } goto La; }
else
{ y = 1u << 25; x -= 1u << 26; if (x >= 5u << 24) { x -= 5u << 24; y |= 1u << 24; } goto Lb; }
}
else
{
if (x < 1u << 30)
{ y = 1u << 27; x -= 1u << 28; if (x >= 5u << 26) { x -= 5u << 26; y |= 1u << 26; } goto Lc; }
else
{ y = 1u << 29; x -= 1u << 30; if (x >= 5u << 28) { x -= 5u << 28; y |= 1u << 28; } }
}
}
}
z = y | 1u << 26; y /= 2; if (x >= z) { x -= z; y |= 1u << 26; }
Lc: z = y | 1u << 24; y /= 2; if (x >= z) { x -= z; y |= 1u << 24; }
Lb: z = y | 1u << 22; y /= 2; if (x >= z) { x -= z; y |= 1u << 22; }
La: z = y | 1u << 20; y /= 2; if (x >= z) { x -= z; y |= 1u << 20; }
L9: z = y | 1u << 18; y /= 2; if (x >= z) { x -= z; y |= 1u << 18; }
L8: z = y | 1u << 16; y /= 2; if (x >= z) { x -= z; y |= 1u << 16; }
L7: z = y | 1u << 14; y /= 2; if (x >= z) { x -= z; y |= 1u << 14; }
L6: z = y | 1u << 12; y /= 2; if (x >= z) { x -= z; y |= 1u << 12; }
L5: z = y | 1u << 10; y /= 2; if (x >= z) { x -= z; y |= 1u << 10; }
L4: z = y | 1u << 08; y /= 2; if (x >= z) { x -= z; y |= 1u << 08; }
L3: z = y | 1u << 06; y /= 2; if (x >= z) { x -= z; y |= 1u << 06; }
L2: z = y | 1u << 04; y /= 2; if (x >= z) { x -= z; y |= 1u << 04; }
L1: z = y | 1u << 02; y /= 2; if (x >= z) { x -= z; y |= 1u << 02; }
L0: return x > y ? y / 2 | 1u : y / 2;
}
我想到的第一件事是:这是一个使用二进制搜索的好地方(此出色的教程启发了。)
要查找的平方根vaule
,我们正在寻找的number
在(1..value)
这里预测是首次如此。我们选择的预测变量是number * number - value > 0.00001
。
double square_root_of(double value)
{
assert(value >= 1);
double lo = 1.0;
double hi = value;
while( hi - lo > 0.00001)
{
double mid = lo + (hi - lo) / 2 ;
std::cout << lo << "," << hi << "," << mid << std::endl;
if( mid * mid - value > 0.00001) //this is the predictors we are using
{
hi = mid;
} else {
lo = mid;
}
}
return lo;
}
使用二进制搜索
public class FindSqrt {
public static void main(String[] strings) {
int num = 10000;
System.out.println(sqrt(num, 0, num));
}
private static int sqrt(int num, int min, int max) {
int middle = (min + max) / 2;
int x = middle * middle;
if (x == num) {
return middle;
} else if (x < num) {
return sqrt(num, middle, max);
} else {
return sqrt(num, min, middle);
}
}
}
通常,整数的平方根(例如2)只能近似(不是因为浮点运算存在问题,而是因为它们是无法精确计算的非理性数)。
当然,某些近似值比其他近似值更好。我的意思是,当然,值1.732比1.7更好地近似于3的平方根。
您给出的链接上的代码所使用的方法是通过近似近似并使用它来计算更好的方法近似值。
这称为牛顿法,您可以对每个新的近似值重复进行计算,直到足够精确为止。
实际上,必须有某种方法来决定何时停止重复,否则它将永远持续下去。
通常,当近似值之间的差异小于您确定的值时,您将停止。
编辑:我认为没有比您已经找到的两个更简单的实现。
顾名思义,相反,但有时“足够接近”就是“足够接近”;反之亦然。无论如何,有趣的阅读。
一个简单的解决方案,可以使用二进制搜索处理浮点平方根和任意精度
红宝石编码
include Math
def sqroot_precision num, precision
upper = num
lower = 0
middle = (upper + lower)/2.0
while true do
diff = middle**2 - num
return middle if diff.abs <= precision
if diff > 0
upper = middle
else diff < 0
lower = middle
end
middle = (upper + lower)/2.0
end
end
puts sqroot_precision 232.3, 0.0000000001
假设我们正在尝试找到2的平方根,而您估计为1.5。我们说a = 2,x = 1.5。为了计算出更好的估计,我们将a除以x。这给出了新值y = 1.333333。但是,我们不能仅仅将其作为下一个估计(为什么不呢?)。我们需要将其与先前的估算值进行平均。因此,我们的下一个估算值xx将为(x + y)/ 2或1.416666。
Double squareRoot(Double a, Double epsilon) {
Double x = 0d;
Double y = a;
Double xx = 0d;
// Make sure both x and y != 0.
while ((x != 0d || y != 0d) && y - x > epsilon) {
xx = (x + y) / 2;
if (xx * xx >= a) {
y = xx;
} else {
x = xx;
}
}
return xx;
}
Epsilon确定近似值的精确度。函数应返回满足abs(x * x-a)<epsilon的第一近似值x,其中abs(x)是x的绝对值。
square_root(2, 1e-6)
Output: 1.4142141342163086