如何删除numpy.array中的列


74

我想删除numpy.array中的选定列。这是我的工作:

n [397]: a = array([[ NaN,   2.,   3., NaN],
   .....:        [  1.,   2.,   3., 9]])

In [398]: print a
[[ NaN   2.   3.  NaN]
 [  1.   2.   3.   9.]]

In [399]: z = any(isnan(a), axis=0)

In [400]: print z
[ True False False  True]

In [401]: delete(a, z, axis = 1)
Out[401]:
 array([[  3.,  NaN],
       [  3.,   9.]])

在此示例中,我的目标是删除所有包含NaN的列。我希望最后一个命令会导致:

array([[2., 3.],
       [2., 3.]])

我怎样才能做到这一点?

Answers:


108

鉴于其名称,我认为标准方法应为delete

import numpy as np

A = np.delete(A, 1, 0)  # delete second row of A
B = np.delete(B, 2, 0)  # delete third row of B
C = np.delete(C, 1, 1)  # delete second column of C

根据numpy的文档页面,其参数numpy.delete如下:

numpy.delete(arr, obj, axis=None)

  • arr 引用输入数组,
  • obj 指的是哪些子数组(例如,列/行号或数组的切片),以及
  • axisaxis = 1逐列()或逐行(axis = 0)删除操作。

14
我相信您应该参考numpy,而不是scipydocs.scipy.org/doc/numpy/reference/generation/numpy.delete.html
hlin117

5
只需添加说明:将数组,索引和轴作为参数
maximus

25

numpy文档中的示例:

>>> a = numpy.array([[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11],
               [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=0)                       # remove rows 1 and 2

array([[ 0,  1,  2,  3],
       [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=1)                       # remove columns 1 and 2

array([[ 0,  3],
       [ 4,  7],
       [ 8, 11],
       [12, 15]])

@alvas是井井有条的解释!stackoverflow.com/questions/32682754/...
大荣林

1
@Alvas,S_是:A nicer way to build up index tuples for arrays.docs.scipy.org/doc/numpy/reference/generated/numpy.s_.html
user_007

13

另一种方法是使用掩码数组:

import numpy as np
a = np.array([[ np.nan,   2.,   3., np.nan], [  1.,   2.,   3., 9]])
print(a)
# [[ NaN   2.   3.  NaN]
#  [  1.   2.   3.   9.]]

np.ma.masked_invalid方法返回一个掩码数组,其中nans和infs被屏蔽掉:

print(np.ma.masked_invalid(a))
[[-- 2.0 3.0 --]
 [1.0 2.0 3.0 9.0]]

np.ma.compress_cols方法返回一个二维数组,其中任何包含被屏蔽值的列均被抑制:

a=np.ma.compress_cols(np.ma.masked_invalid(a))
print(a)
# [[ 2.  3.]
#  [ 2.  3.]]

参见 操作maskedarray


8

这将创建另一个没有这些列的数组:

  b = a.compress(logical_not(z), axis=1)

2
凉。我希望MATLAB的语法在这里工作:“一个(:,Z)= []”要简单得多
鲍里斯戈列利克

1
@bpowah:的确如此。更一般的方法是b = a [:,z]。您可能需要相应地更新答案
Boris Gorelik

6

Numpy文档

np.delete(arr,obj,axis = None)返回一个新的数组,该数组具有沿删除的轴的子数组。

>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

3

根据您的情况,可以使用以下方法提取所需的数据:

a[:, -z]

“ -z”是布尔数组“ z”的逻辑取反。这与以下内容相同:

a[:, logical_not(z)]

1
>>> A = array([[ 1,  2,  3,  4],
               [ 5,  6,  7,  8],
               [ 9, 10, 11, 12]])

>>> A = A.transpose()

>>> A = A[1:].transpose()

-1

删除包含NaN的Matrix列。这是一个冗长的答案,但希望易于遵循。

def column_to_vector(matrix, i):
    return [row[i] for row in matrix]
import numpy
def remove_NaN_columns(matrix):
    import scipy
    import math
    from numpy import column_stack, vstack

    columns = A.shape[1]
    #print("columns", columns)
    result = []
    skip_column = True
    for column in range(0, columns):
        vector = column_to_vector(A, column)
        skip_column = False
        for value in vector:
            # print(column, vector, value, math.isnan(value) )
            if math.isnan(value):
                skip_column = True
        if skip_column == False:
            result.append(vector)
    return column_stack(result)

### test it
A = vstack(([ float('NaN'), 2., 3., float('NaN')], [ 1., 2., 3., 9]))
print("A shape", A.shape, "\n", A)
B = remove_NaN_columns(A)
print("B shape", B.shape, "\n", B)

A shape (2, 4) 
 [[ nan   2.   3.  nan]
 [  1.   2.   3.   9.]]
B shape (2, 2) 
 [[ 2.  3.]
 [ 2.  3.]]

我实际上不跟随你。此代码如何工作?
RamenChef
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.