python中的n克,四克,五克,六克?


137

我正在寻找一种将文本拆分为n-gram的方法。通常我会做类似的事情:

import nltk
from nltk import bigrams
string = "I really like python, it's pretty awesome."
string_bigrams = bigrams(string)
print string_bigrams

我知道nltk仅提供二元组和三元组,但是有没有办法将我的文本分为四克,五克甚至一百克?

谢谢!


您是否希望按单词或字符将文本分成n个大小的组?您可以举一个上面的输出示例吗?
ChrisProsser

4
从来没有做过nltk,但是看起来好像有一个函数ingrams的第二个参数是所需ngram的程度。是 NLTK您正在使用的版本?即使不是,这里是编辑:有ngramsingrams在那里,ingrams作为一个发电机。
布莱恩

在该线程下还有一个可能有用的答案: stackoverflow.com/questions/7591258/fast-n-gram-calculation
ChrisProsser 2013年

Answers:


212

其他用户提供的基于本地Python的出色答案。但是这就是nltk方法(以防万一,OP会因为重新发明nltk库中已经存在的内容而受到惩罚)。

有一个NGRAM模块,人们很少使用nltk。这不是因为很难读取ngram,而是基于ngram训练模型,其中n> 3将导致大量数据稀疏。

from nltk import ngrams

sentence = 'this is a foo bar sentences and i want to ngramize it'

n = 6
sixgrams = ngrams(sentence.split(), n)

for grams in sixgrams:
  print grams

4
对于字符的n-gram,还请查看:stackoverflow.com/questions/22428020/...
alvas

有什么方法可以使用N-gram检查整个文档,例如txt吗?我不熟悉Python,所以不知道它是否可以打开txt文件,然后使用N-gram分析来检查?
maoyi

1
有人可以评论如何测试的准确性sixgrams吗?
LYu

64

我很惊讶这还没有出现:

In [34]: sentence = "I really like python, it's pretty awesome.".split()

In [35]: N = 4

In [36]: grams = [sentence[i:i+N] for i in xrange(len(sentence)-N+1)]

In [37]: for gram in grams: print gram
['I', 'really', 'like', 'python,']
['really', 'like', 'python,', "it's"]
['like', 'python,', "it's", 'pretty']
['python,', "it's", 'pretty', 'awesome.']

这就是第一个答案减去频率计数和元组转换的结果。
布莱恩

最好将它重写为理解。
布莱恩

@amirouche:好收获。感谢您的错误报告。它现在已经固定
inspectorG4dget

16

仅使用nltk工具

from nltk.tokenize import word_tokenize
from nltk.util import ngrams

def get_ngrams(text, n ):
    n_grams = ngrams(word_tokenize(text), n)
    return [ ' '.join(grams) for grams in n_grams]

输出示例

get_ngrams('This is the simplest text i could think of', 3 )

['This is the', 'is the simplest', 'the simplest text', 'simplest text i', 'text i could', 'i could think', 'could think of']

为了使ngram保持数组格式,只需删除 ' '.join


15

这是做n-gram的另一种简单方法

>>> from nltk.util import ngrams
>>> text = "I am aware that nltk only offers bigrams and trigrams, but is there a way to split my text in four-grams, five-grams or even hundred-grams"
>>> tokenize = nltk.word_tokenize(text)
>>> tokenize
['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
>>> bigrams = ngrams(tokenize,2)
>>> bigrams
[('I', 'am'), ('am', 'aware'), ('aware', 'that'), ('that', 'nltk'), ('nltk', 'only'), ('only', 'offers'), ('offers', 'bigrams'), ('bigrams', 'and'), ('and', 'trigrams'), ('trigrams', ','), (',', 'but'), ('but', 'is'), ('is', 'there'), ('there', 'a'), ('a', 'way'), ('way', 'to'), ('to', 'split'), ('split', 'my'), ('my', 'text'), ('text', 'in'), ('in', 'four-grams'), ('four-grams', ','), (',', 'five-grams'), ('five-grams', 'or'), ('or', 'even'), ('even', 'hundred-grams')]
>>> trigrams=ngrams(tokenize,3)
>>> trigrams
[('I', 'am', 'aware'), ('am', 'aware', 'that'), ('aware', 'that', 'nltk'), ('that', 'nltk', 'only'), ('nltk', 'only', 'offers'), ('only', 'offers', 'bigrams'), ('offers', 'bigrams', 'and'), ('bigrams', 'and', 'trigrams'), ('and', 'trigrams', ','), ('trigrams', ',', 'but'), (',', 'but', 'is'), ('but', 'is', 'there'), ('is', 'there', 'a'), ('there', 'a', 'way'), ('a', 'way', 'to'), ('way', 'to', 'split'), ('to', 'split', 'my'), ('split', 'my', 'text'), ('my', 'text', 'in'), ('text', 'in', 'four-grams'), ('in', 'four-grams', ','), ('four-grams', ',', 'five-grams'), (',', 'five-grams', 'or'), ('five-grams', 'or', 'even'), ('or', 'even', 'hundred-grams')]
>>> fourgrams=ngrams(tokenize,4)
>>> fourgrams
[('I', 'am', 'aware', 'that'), ('am', 'aware', 'that', 'nltk'), ('aware', 'that', 'nltk', 'only'), ('that', 'nltk', 'only', 'offers'), ('nltk', 'only', 'offers', 'bigrams'), ('only', 'offers', 'bigrams', 'and'), ('offers', 'bigrams', 'and', 'trigrams'), ('bigrams', 'and', 'trigrams', ','), ('and', 'trigrams', ',', 'but'), ('trigrams', ',', 'but', 'is'), (',', 'but', 'is', 'there'), ('but', 'is', 'there', 'a'), ('is', 'there', 'a', 'way'), ('there', 'a', 'way', 'to'), ('a', 'way', 'to', 'split'), ('way', 'to', 'split', 'my'), ('to', 'split', 'my', 'text'), ('split', 'my', 'text', 'in'), ('my', 'text', 'in', 'four-grams'), ('text', 'in', 'four-grams', ','), ('in', 'four-grams', ',', 'five-grams'), ('four-grams', ',', 'five-grams', 'or'), (',', 'five-grams', 'or', 'even'), ('five-grams', 'or', 'even', 'hundred-grams')]

1
必须执行nltk.download('punkt')才能使用nltk.word_tokenize()函数。为了打印结果,还必须使用list(<genrator_object>)将生成器对象(如双字组,三元组和四元组)转换为列表。
bhatman '18

11

对于需要二元组或三元组的情况,人们已经很好地回答了,但是在这种情况下,如果需要句子的每一个整组,您可以使用nltk.util.everygrams

>>> from nltk.util import everygrams

>>> message = "who let the dogs out"

>>> msg_split = message.split()

>>> list(everygrams(msg_split))
[('who',), ('let',), ('the',), ('dogs',), ('out',), ('who', 'let'), ('let', 'the'), ('the', 'dogs'), ('dogs', 'out'), ('who', 'let', 'the'), ('let', 'the', 'dogs'), ('the', 'dogs', 'out'), ('who', 'let', 'the', 'dogs'), ('let', 'the', 'dogs', 'out'), ('who', 'let', 'the', 'dogs', 'out')]

如果您有一个限制,如三字母组的最大长度应为3,则可以使用max_len参数来指定它。

>>> list(everygrams(msg_split, max_len=2))
[('who',), ('let',), ('the',), ('dogs',), ('out',), ('who', 'let'), ('let', 'the'), ('the', 'dogs'), ('dogs', 'out')]

您可以修改max_len参数以实现任意克,即4克,5克,6甚至100克。

可以修改前面提到的解决方案以实现上面提到的解决方案,但是此解决方案比这要简单得多。

欲了解更多信息,请点击这里

而且,当您只需要一个特定的语法,例如bigram或trigram等时,可以使用MAHassan的答案中提到的nltk.util.ngrams。


6

您可以使用以下命令轻松启动自己的功能itertools

from itertools import izip, islice, tee
s = 'spam and eggs'
N = 3
trigrams = izip(*(islice(seq, index, None) for index, seq in enumerate(tee(s, N))))
list(trigrams)
# [('s', 'p', 'a'), ('p', 'a', 'm'), ('a', 'm', ' '),
# ('m', ' ', 'a'), (' ', 'a', 'n'), ('a', 'n', 'd'),
# ('n', 'd', ' '), ('d', ' ', 'e'), (' ', 'e', 'g'),
# ('e', 'g', 'g'), ('g', 'g', 's')]

1
能否请您解释一下izip(*(islice(seq, index, None) for index, seq in enumerate(tee(s, N))))我不太了解。
TomazStoiljkovic

4

使用python的buildin构建双字母组的一种更优雅的方法zip()。只需通过将原始字符串转换为列表split(),然后正常传递一次列表,然后一次偏移一个元素即可。

string = "I really like python, it's pretty awesome."

def find_bigrams(s):
    input_list = s.split(" ")
    return zip(input_list, input_list[1:])

def find_ngrams(s, n):
  input_list = s.split(" ")
  return zip(*[input_list[i:] for i in range(n)])

find_bigrams(string)

[('I', 'really'), ('really', 'like'), ('like', 'python,'), ('python,', "it's"), ("it's", 'pretty'), ('pretty', 'awesome.')]

2

我从未处理过nltk,但是在一些小班项目中做了N-grams。如果要查找字符串中所有N-gram出现的频率,可以采用这种方法。D会给你N个单词的直方图。

D = dict()
string = 'whatever string...'
strparts = string.split()
for i in range(len(strparts)-N): # N-grams
    try:
        D[tuple(strparts[i:i+N])] += 1
    except:
        D[tuple(strparts[i:i+N])] = 1

collections.Counter(tuple(strparts[i:i+N]) for i in xrange(len(strparts)-N))的工作速度将比“试穿”的工作速度更快
inspectorG4dget

2

对于four_grams,它已经在NLTK中,这是一段代码,可以帮助您实现这一目标:

 from nltk.collocations import *
 import nltk
 #You should tokenize your text
 text = "I do not like green eggs and ham, I do not like them Sam I am!"
 tokens = nltk.wordpunct_tokenize(text)
 fourgrams=nltk.collocations.QuadgramCollocationFinder.from_words(tokens)
 for fourgram, freq in fourgrams.ngram_fd.items():  
       print fourgram, freq

希望对您有所帮助。


2

您可以使用sklearn.feature_extraction.text.CountVectorizer

import sklearn.feature_extraction.text # FYI http://scikit-learn.org/stable/install.html
ngram_size = 4
string = ["I really like python, it's pretty awesome."]
vect = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(ngram_size,ngram_size))
vect.fit(string)
print('{1}-grams: {0}'.format(vect.get_feature_names(), ngram_size))

输出:

4-grams: [u'like python it pretty', u'python it pretty awesome', u'really like python it']

您可以设置为ngram_size任何正整数。也就是说,您可以将文本拆分为四克,五克甚至一百克。


2

如果效率是一个问题,您必须构建多个不同的n-gram(如您所说的最多一百个),但是您想使用纯python,我会这样做:

from itertools import chain

def n_grams(seq, n=1):
    """Returns an itirator over the n-grams given a listTokens"""
    shiftToken = lambda i: (el for j,el in enumerate(seq) if j>=i)
    shiftedTokens = (shiftToken(i) for i in range(n))
    tupleNGrams = zip(*shiftedTokens)
    return tupleNGrams # if join in generator : (" ".join(i) for i in tupleNGrams)

def range_ngrams(listTokens, ngramRange=(1,2)):
    """Returns an itirator over all n-grams for n in range(ngramRange) given a listTokens."""
    return chain(*(n_grams(listTokens, i) for i in range(*ngramRange)))

用法:

>>> input_list = input_list = 'test the ngrams generator'.split()
>>> list(range_ngrams(input_list, ngramRange=(1,3)))
[('test',), ('the',), ('ngrams',), ('generator',), ('test', 'the'), ('the', 'ngrams'), ('ngrams', 'generator'), ('test', 'the', 'ngrams'), ('the', 'ngrams', 'generator')]

〜与NLTK相同的速度:

import nltk
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=5)
# 7.02 ms ± 79 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
n_grams(input_list,n=5)
# 7.01 ms ± 103 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=1)
nltk.ngrams(input_list,n=2)
nltk.ngrams(input_list,n=3)
nltk.ngrams(input_list,n=4)
nltk.ngrams(input_list,n=5)
# 7.32 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
range_ngrams(input_list, ngramRange=(1,6))
# 7.13 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

重新发布我以前的答案


0

Nltk很棒,但有时对于某些项目来说是一项开销:

import re
def tokenize(text, ngrams=1):
    text = re.sub(r'[\b\(\)\\\"\'\/\[\]\s+\,\.:\?;]', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    tokens = text.split()
    return [tuple(tokens[i:i+ngrams]) for i in xrange(len(tokens)-ngrams+1)]

使用示例:

>> text = "This is an example text"
>> tokenize(text, 2)
[('This', 'is'), ('is', 'an'), ('an', 'example'), ('example', 'text')]
>> tokenize(text, 3)
[('This', 'is', 'an'), ('is', 'an', 'example'), ('an', 'example', 'text')]

0

您可以使用以下代码获得所有4-6克的代码,而无需以下其他软件包:

from itertools import chain

def get_m_2_ngrams(input_list, min, max):
    for s in chain(*[get_ngrams(input_list, k) for k in range(min, max+1)]):
        yield ' '.join(s)

def get_ngrams(input_list, n):
    return zip(*[input_list[i:] for i in range(n)])

if __name__ == '__main__':
    input_list = ['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
    for s in get_m_2_ngrams(input_list, 4, 6):
        print(s)

输出如下:

I am aware that
am aware that nltk
aware that nltk only
that nltk only offers
nltk only offers bigrams
only offers bigrams and
offers bigrams and trigrams
bigrams and trigrams ,
and trigrams , but
trigrams , but is
, but is there
but is there a
is there a way
there a way to
a way to split
way to split my
to split my text
split my text in
my text in four-grams
text in four-grams ,
in four-grams , five-grams
four-grams , five-grams or
, five-grams or even
five-grams or even hundred-grams
I am aware that nltk
am aware that nltk only
aware that nltk only offers
that nltk only offers bigrams
nltk only offers bigrams and
only offers bigrams and trigrams
offers bigrams and trigrams ,
bigrams and trigrams , but
and trigrams , but is
trigrams , but is there
, but is there a
but is there a way
is there a way to
there a way to split
a way to split my
way to split my text
to split my text in
split my text in four-grams
my text in four-grams ,
text in four-grams , five-grams
in four-grams , five-grams or
four-grams , five-grams or even
, five-grams or even hundred-grams
I am aware that nltk only
am aware that nltk only offers
aware that nltk only offers bigrams
that nltk only offers bigrams and
nltk only offers bigrams and trigrams
only offers bigrams and trigrams ,
offers bigrams and trigrams , but
bigrams and trigrams , but is
and trigrams , but is there
trigrams , but is there a
, but is there a way
but is there a way to
is there a way to split
there a way to split my
a way to split my text
way to split my text in
to split my text in four-grams
split my text in four-grams ,
my text in four-grams , five-grams
text in four-grams , five-grams or
in four-grams , five-grams or even
four-grams , five-grams or even hundred-grams

您可以在此博客上找到更多详细信息


0

大约七年后,这是一个更优雅的答案collections.deque

def ngrams(words, n):
    d = collections.deque(maxlen=n)
    d.extend(words[:n])
    words = words[n:]
    for window, word in zip(itertools.cycle((d,)), words):
        print(' '.join(window))
        d.append(word)

words = ['I', 'am', 'become', 'death,', 'the', 'destroyer', 'of', 'worlds']

输出:

In [15]: ngrams(words, 3)                                                                                                                                                                                                                     
I am become
am become death,
become death, the
death, the destroyer
the destroyer of

In [16]: ngrams(words, 4)                                                                                                                                                                                                                     
I am become death,
am become death, the
become death, the destroyer
death, the destroyer of

In [17]: ngrams(words, 1)                                                                                                                                                                                                                     
I
am
become
death,
the
destroyer
of

In [18]: ngrams(words, 2)                                                                                                                                                                                                                     
I am
am become
become death,
death, the
the destroyer
destroyer of

0

如果您想为具有恒定内存使用量的大字符串提供纯迭代器解决方案:

from typing import Iterable  
import itertools

def ngrams_iter(input: str, ngram_size: int, token_regex=r"[^\s]+") -> Iterable[str]:
    input_iters = [ 
        map(lambda m: m.group(0), re.finditer(token_regex, input)) 
        for n in range(ngram_size) 
    ]
    # Skip first words
    for n in range(1, ngram_size): list(map(next, input_iters[n:]))  

    output_iter = itertools.starmap( 
        lambda *args: " ".join(args),  
        zip(*input_iters) 
    ) 
    return output_iter

测试:

input = "If you want a pure iterator solution for large strings with constant memory usage"
list(ngrams_iter(input, 5))

输出:

['If you want a pure',
 'you want a pure iterator',
 'want a pure iterator solution',
 'a pure iterator solution for',
 'pure iterator solution for large',
 'iterator solution for large strings',
 'solution for large strings with',
 'for large strings with constant',
 'large strings with constant memory',
 'strings with constant memory usage']
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.