我认为这里的性能并不重要,但是我无法抗拒。zip()函数完全复制了两个向量(实际上是更多的矩阵转置),只是以“ Pythonic”顺序获取数据。计时一下实现细节将是很有趣的:
import math
def cosine_similarity(v1,v2):
"compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
sumxx, sumxy, sumyy = 0, 0, 0
for i in range(len(v1)):
x = v1[i]; y = v2[i]
sumxx += x*x
sumyy += y*y
sumxy += x*y
return sumxy/math.sqrt(sumxx*sumyy)
v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))
Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712
这一次经历了像C一样的噪声,一次提取元素,但没有批量数组复制,并且所有重要的事情都在单个for循环中完成,并且使用单个平方根。
预计到达时间:将打印调用更新为功能。(原始版本是Python 2.7,而不是3.3。当前版本在带from __future__ import print_function
声明的Python 2.7下运行。)两种方法的输出都是相同的。
在3.0GHz Core 2 Duo上的CPYthon 2.7.3:
>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264
因此,在这种情况下,非Python方式要快3.6倍。