如何计算Python中正态分布的累积分布函数(CDF)的反函数?
我应该使用哪个库?可能是卑鄙的?
如何计算Python中正态分布的累积分布函数(CDF)的反函数?
我应该使用哪个库?可能是卑鄙的?
Answers:
NORMSINV(在注释中提到)是标准正态分布的CDF的倒数。使用scipy
,您可以使用对象的ppf
方法进行计算scipy.stats.norm
。首字母缩写词ppf
代表百分点函数,它是分位数函数的另一个名称。
In [20]: from scipy.stats import norm
In [21]: norm.ppf(0.95)
Out[21]: 1.6448536269514722
检查它是否与CDF相反:
In [34]: norm.cdf(norm.ppf(0.95))
Out[34]: 0.94999999999999996
默认情况下,norm.ppf
使用mean = 0和stddev = 1,这是“标准”正态分布。您可以通过分别指定loc
和scale
参数来使用不同的均值和标准差。
In [35]: norm.ppf(0.95, loc=10, scale=2)
Out[35]: 13.289707253902945
如果查看源代码scipy.stats.norm
,您会发现该ppf
方法最终会调用scipy.special.ndtri
。因此,要计算标准正态分布的CDF的倒数,可以直接使用该函数:
In [43]: from scipy.special import ndtri
In [44]: ndtri(0.95)
Out[44]: 1.6448536269514722
# given random variable X (house price) with population muy = 60, sigma = 40
import scipy as sc
import scipy.stats as sct
sc.version.full_version # 0.15.1
#a. Find P(X<50)
sct.norm.cdf(x=50,loc=60,scale=40) # 0.4012936743170763
#b. Find P(X>=50)
sct.norm.sf(x=50,loc=60,scale=40) # 0.5987063256829237
#c. Find P(60<=X<=80)
sct.norm.cdf(x=80,loc=60,scale=40) - sct.norm.cdf(x=60,loc=60,scale=40)
#d. how much top most 5% expensive house cost at least? or find x where P(X>=x) = 0.05
sct.norm.isf(q=0.05,loc=60,scale=40)
#e. how much top most 5% cheapest house cost at least? or find x where P(X<=x) = 0.05
sct.norm.ppf(q=0.05,loc=60,scale=40)
Starting Python 3.8
, the standard library provides the NormalDist
object as part of the statistics
module.
It can be used to get the inverse cumulative distribution function (inv_cdf
- inverse of the cdf
), also known as the quantile function or the percent-point function for a given mean (mu
) and standard deviation (sigma
):
from statistics import NormalDist
NormalDist(mu=10, sigma=2).inv_cdf(0.95)
# 13.289707253902943
Which can be simplified for the standard normal distribution (mu = 0
and sigma = 1
):
NormalDist().inv_cdf(0.95)
# 1.6448536269514715