我的集群:1个主机,11个从机,每个节点有6 GB内存。
我的设置:
spark.executor.memory=4g, Dspark.akka.frameSize=512
这是问题所在:
首先,我从HDFS到RDD读取了一些数据(2.19 GB):
val imageBundleRDD = sc.newAPIHadoopFile(...)
其次,在此RDD上执行以下操作:
val res = imageBundleRDD.map(data => {
val desPoints = threeDReconstruction(data._2, bg)
(data._1, desPoints)
})
最后,输出到HDFS:
res.saveAsNewAPIHadoopFile(...)
当我运行程序时,它显示:
.....
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Starting task 1.0:24 as TID 33 on executor 9: Salve7.Hadoop (NODE_LOCAL)
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Serialized task 1.0:24 as 30618515 bytes in 210 ms
14/01/15 21:42:27 INFO cluster.ClusterTaskSetManager: Starting task 1.0:36 as TID 34 on executor 2: Salve11.Hadoop (NODE_LOCAL)
14/01/15 21:42:28 INFO cluster.ClusterTaskSetManager: Serialized task 1.0:36 as 30618515 bytes in 449 ms
14/01/15 21:42:28 INFO cluster.ClusterTaskSetManager: Starting task 1.0:32 as TID 35 on executor 7: Salve4.Hadoop (NODE_LOCAL)
Uncaught error from thread [spark-akka.actor.default-dispatcher-3] shutting down JVM since 'akka.jvm-exit-on-fatal-error' is enabled for ActorSystem[spark]
java.lang.OutOfMemoryError: Java heap space
任务太多?
PS:输入数据约为225 MB时,一切正常。
我怎么解决这个问题?