在Python的性能方面,是一个列表理解或功能,如map()
,filter()
和reduce()
比for循环快?从技术上讲,为什么它们以C速度运行,而for循环以python虚拟机速度运行?
假设在我正在开发的游戏中,我需要使用for循环绘制复杂而庞大的地图。这个问题肯定是相关的,例如,如果列表理解确实确实更快,那么它将是避免滞后的更好选择(尽管代码具有视觉上的复杂性)。
在Python的性能方面,是一个列表理解或功能,如map()
,filter()
和reduce()
比for循环快?从技术上讲,为什么它们以C速度运行,而for循环以python虚拟机速度运行?
假设在我正在开发的游戏中,我需要使用for循环绘制复杂而庞大的地图。这个问题肯定是相关的,例如,如果列表理解确实确实更快,那么它将是避免滞后的更好选择(尽管代码具有视觉上的复杂性)。
Answers:
以下是粗略的准则和基于经验的有根据的猜测。您应该timeit
或配置您的具体用例以获得确切的数字,并且这些数字有时可能与以下内容不一致。
列表理解通常比精确等效的for
循环(实际上是构建列表)要快一点,这很可能是因为它不必append
在每次迭代时都查找列表及其方法。但是,列表理解仍然会执行字节码级别的循环:
>>> dis.dis(<the code object for `[x for x in range(10)]`>)
1 0 BUILD_LIST 0
3 LOAD_FAST 0 (.0)
>> 6 FOR_ITER 12 (to 21)
9 STORE_FAST 1 (x)
12 LOAD_FAST 1 (x)
15 LIST_APPEND 2
18 JUMP_ABSOLUTE 6
>> 21 RETURN_VALUE
由于创建和扩展列表的开销很大,因此使用列表推导代替不构建列表的循环,无意义地累积无意义的值的列表然后将其扔掉通常会较慢。列表理解并不是比一个好的旧循环本质上更快的魔术。
至于功能列表处理功能:虽然这些都是用C语言编写,并可能超越Python编写的相同的功能,它们是不是一定是最快的选择。如果该函数也是用C编写的,则可以提高速度。但是在大多数情况下,使用lambda
(或其他Python函数)重复设置Python堆栈框架等开销会消耗掉所有的节省。在没有函数调用的情况下,简单地在线完成相同的工作(例如,用列表理解代替map
or filter
)通常会稍快一些。
假设在我正在开发的游戏中,我需要使用for循环绘制复杂而庞大的地图。这个问题肯定是相关的,例如,如果列表理解确实确实更快,那么它将是避免滞后的更好选择(尽管代码具有视觉上的复杂性)。
很有可能,如果用良好的非“优化” Python编写时这样的代码还不够快,那么就没有足够的Python级微优化可以使它足够快了,您应该开始考虑降级为C。微观优化通常可以大大加快Python代码的速度,对此(绝对值)的限制很低。而且,即使在达到极限之前,咬住子弹并写一些C语言也变得更具成本效益(加速15%,加速300%)。
如果查看python.org上的信息,则可以看到以下摘要:
Version Time (seconds)
Basic loop 3.47
Eliminate dots 2.45
Local variable & no dots 1.79
Using map function 0.54
但是您确实应该详细阅读以上文章,以了解造成性能差异的原因。
我也强烈建议您使用timeit对代码计时。在一天的结束时,可能会出现例如for
在满足条件时需要跳出循环的情况。它可能比调用找出结果更快map
。
你具体问左右map()
,filter()
和reduce()
,但我相信你想了解一般的函数式编程。在对一组点中所有点之间的距离进行计算的问题上进行了自我测试之后,结果表明,函数编程(使用starmap
内置itertools
模块中的函数)比for循环要慢一些(使用1.25倍的时间)。事实)。这是我使用的示例代码:
import itertools, time, math, random
class Point:
def __init__(self,x,y):
self.x, self.y = x, y
point_set = (Point(0, 0), Point(0, 1), Point(0, 2), Point(0, 3))
n_points = 100
pick_val = lambda : 10 * random.random() - 5
large_set = [Point(pick_val(), pick_val()) for _ in range(n_points)]
# the distance function
f_dist = lambda x0, x1, y0, y1: math.sqrt((x0 - x1) ** 2 + (y0 - y1) ** 2)
# go through each point, get its distance from all remaining points
f_pos = lambda p1, p2: (p1.x, p2.x, p1.y, p2.y)
extract_dists = lambda x: itertools.starmap(f_dist,
itertools.starmap(f_pos,
itertools.combinations(x, 2)))
print('Distances:', list(extract_dists(point_set)))
t0_f = time.time()
list(extract_dists(large_set))
dt_f = time.time() - t0_f
功能版本是否比程序版本更快?
def extract_dists_procedural(pts):
n_pts = len(pts)
l = []
for k_p1 in range(n_pts - 1):
for k_p2 in range(k_p1, n_pts):
l.append((pts[k_p1].x - pts[k_p2].x) ** 2 +
(pts[k_p1].y - pts[k_p2].y) ** 2)
return l
t0_p = time.time()
list(extract_dists_procedural(large_set))
# using list() on the assumption that
# it eats up as much time as in the functional version
dt_p = time.time() - t0_p
f_vs_p = dt_p / dt_f
if f_vs_p >= 1.0:
print('Time benefit of functional progamming:', f_vs_p,
'times as fast for', n_points, 'points')
else:
print('Time penalty of functional programming:', 1 / f_vs_p,
'times as slow for', n_points, 'points')
我写了一个简单的脚本来测试速度,这就是我发现的结果。实际上对于我来说,for循环最快。真的让我感到惊讶,请检查波纹管(计算平方和)。
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next**2, numbers, 0)
def square_sum2(numbers):
a = 0
for i in numbers:
i = i**2
a += i
return a
def square_sum3(numbers):
sqrt = lambda x: x**2
return sum(map(sqrt, numbers))
def square_sum4(numbers):
return(sum([int(i)**2 for i in numbers]))
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
0:00:00.302000 #Reduce
0:00:00.144000 #For loop
0:00:00.318000 #Map
0:00:00.390000 #List comprehension
int
in square_sum4
也使其比for循环快很多,也慢一点。
我修改了@Alisa的代码,并用来cProfile
说明为什么列表理解速度更快:
from functools import reduce
import datetime
def reduce_(numbers):
return reduce(lambda sum, next: sum + next * next, numbers, 0)
def for_loop(numbers):
a = []
for i in numbers:
a.append(i*2)
a = sum(a)
return a
def map_(numbers):
sqrt = lambda x: x*x
return sum(map(sqrt, numbers))
def list_comp(numbers):
return(sum([i*i for i in numbers]))
funcs = [
reduce_,
for_loop,
map_,
list_comp
]
if __name__ == "__main__":
# [1, 2, 5, 3, 1, 2, 5, 3]
import cProfile
for f in funcs:
print('=' * 25)
print("Profiling:", f.__name__)
print('=' * 25)
pr = cProfile.Profile()
for i in range(10**6):
pr.runcall(f, [1, 2, 5, 3, 1, 2, 5, 3])
pr.create_stats()
pr.print_stats()
结果如下:
=========================
Profiling: reduce_
=========================
11000000 function calls in 1.501 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.162 0.000 1.473 0.000 profiling.py:4(reduce_)
8000000 0.461 0.000 0.461 0.000 profiling.py:5(<lambda>)
1000000 0.850 0.000 1.311 0.000 {built-in method _functools.reduce}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: for_loop
=========================
11000000 function calls in 1.372 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.879 0.000 1.344 0.000 profiling.py:7(for_loop)
1000000 0.145 0.000 0.145 0.000 {built-in method builtins.sum}
8000000 0.320 0.000 0.320 0.000 {method 'append' of 'list' objects}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: map_
=========================
11000000 function calls in 1.470 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.264 0.000 1.442 0.000 profiling.py:14(map_)
8000000 0.387 0.000 0.387 0.000 profiling.py:15(<lambda>)
1000000 0.791 0.000 1.178 0.000 {built-in method builtins.sum}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: list_comp
=========================
4000000 function calls in 0.737 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.318 0.000 0.709 0.000 profiling.py:18(list_comp)
1000000 0.261 0.000 0.261 0.000 profiling.py:19(<listcomp>)
1000000 0.131 0.000 0.131 0.000 {built-in method builtins.sum}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
恕我直言:
reduce
并且map
总体上来说很慢。不仅如此,sum
与map
返回sum
列表相比,在返回的迭代器上使用慢for_loop
使用append,这在某种程度上当然很慢sum
相比,它也变得更快map
给Alphii答案增加一点扭曲,实际上for循环将是第二好,并且比循环慢6倍map
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next**2, numbers, 0)
def square_sum2(numbers):
a = 0
for i in numbers:
a += i**2
return a
def square_sum3(numbers):
a = 0
map(lambda x: a+x**2, numbers)
return a
def square_sum4(numbers):
a = 0
return [a+i**2 for i in numbers]
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
主要的更改是消除了缓慢的sum
通话,以及int()
在最后一种情况下可能不必要的通话。实际上,将for循环和map放在相同的术语中就可以说是事实。请记住,lambda是功能性概念,从理论上讲不应该具有副作用,但是,它们可以具有诸如添加到的副作用a
。在这种情况下使用Python 3.6.1,Ubuntu 14.04,Intel(R)Core(TM)i7-4770 CPU @ 3.40GHz时的结果
0:00:00.257703 #Reduce
0:00:00.184898 #For loop
0:00:00.031718 #Map
0:00:00.212699 #List comprehension
我设法修改了@alpiii的一些代码,并发现List理解比for循环快一点。它可能是由引起的int()
,在列表理解和for循环之间是不公平的。
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next*next, numbers, 0)
def square_sum2(numbers):
a = []
for i in numbers:
a.append(i*2)
a = sum(a)
return a
def square_sum3(numbers):
sqrt = lambda x: x*x
return sum(map(sqrt, numbers))
def square_sum4(numbers):
return(sum([i*i for i in numbers]))
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
0:00:00.101122 #Reduce
0:00:00.089216 #For loop
0:00:00.101532 #Map
0:00:00.068916 #List comprehension