如何将单独的Pan​​das DataFrame绘制为子图?


128

我有一些Pandas DataFrame共享相同的价值规模,但是具有不同的列和索引。调用时df.plot(),会得到单独的绘图图像。我真正想要的是将它们与子图放置在同一块图上,但是不幸的是,我未能提出解决方案,并且希望获得一些帮助。

Answers:


249

您可以使用matplotlib手动创建子图,然后使用ax关键字在特定的子图上绘制数据框。例如,对于4个子图(2x2):

import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=2, ncols=2)

df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...

axes是一个包含不同子图轴的数组,您只需通过index即可访问一个axes
如果要共享x轴,则可以提供sharex=Trueplt.subplots


33
请注意,令人讨厌的是,.subplots()根据要创建的子图阵列的尺寸,它们返回不同的坐标系。因此,如果您在某个位置返回子图,则nrows=2, ncols=1需要将轴索引为axes[0]axes[1]。参见stackoverflow.com/a/21967899/1569221
canary_in_the_data_mine 2015年

3
@canary_in_the_data_mine谢谢,这真是令人讨厌...您的评论为我节省了一些时间:)无法弄清楚为什么我得到了IndexError: too many indices for array
snd

9
@canary_in_the_data_mine这仅.subplot()在使用默认参数时很烦人。设置squeeze=False为在任何情况下.subplot()都始终返回ndarray行和列的强制。
马丁

73

您可以看到例如 在演示joris答案的文档中。另外,从文档,您也可以设置subplots=Truelayout=(,)大熊猫内plot功能:

df.plot(subplots=True, layout=(1,2))

你也可以使用fig.add_subplot()这需要插曲电网参数,如221,222,223,224,等,在后描述这里。可以在此ipython笔记本中看到有关熊猫数据框(包括子图)的漂亮绘图示例。


2
尽管joris的答案非常适合一般matplotlib的用法,但对于希望使用熊猫进行快速数据可视化的任何人来说,这都是极好的选择。它也更适合该问题。
Little Bobby Tables

请记住,subplots和和layoutkwargs只会为单个数据帧生成多个图。这与OP的将多个数据帧绘制到单个图中的问题有关,但不是解决方案。
奥斯丁

1
这是纯熊猫使用的更好答案。这不需要直接导入matplotlib(尽管您通常无论如何应该如此),也不需要循环生成任意形状(layout=(df.shape[1], 1)例如,可以使用)。
Anatoly Makarevich

20

您可以使用熟悉的Matplotlib样式调用a figuresubplot,但是只需使用即可指定当前轴plt.gca()。一个例子:

plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())

等等...


6

您可以使用matplotlib通过绘制所有数据框列表的简单技巧来绘制多个熊猫数据框的多个子图。然后使用for循环绘制子图。

工作代码:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes 
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
    for c in range(ncol):
        df_list[count].plot(ax=axes[r,c])
        count=+1

在此处输入图片说明

使用此代码,您可以在任何配置中绘制子图。您只需要定义行nrow数和列数即可ncol。另外,您需要列出df_list要绘制的数据框。


2
注意最后一行中的错字:它不是count =+1,但count +=1
PEBKAC

4

您可以使用此:

fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)

ax = fig.add_subplot(222)
plt.plot(x,z)
...

plt.show()

3

您可能根本不需要使用熊猫。这是猫的频率的matplotlib图:

在此处输入图片说明

x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
  axes[c].plot(x, y)
  axes[c].set_title('cats')
plt.tight_layout()

1

以上面的@joris响应为基础,如果您已经建立了对该子图的引用,则也可以使用该引用。例如,

ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...

df.plot.barh(ax=ax1, stacked=True)

0

如何从具有长(整洁)数据的数据帧字典中创建多个图

  • 假设条件

    • 有一个包含多个整齐数据框架的字典
      • 通过读取文件创建
      • 通过将单个数据帧分为多个数据帧来创建
    • 类别cat可能重叠,但是所有数据框可能不包含的所有值cat
    • hue='cat'
  • 因为要遍历数据帧,所以不能保证每个图的颜色都相同

    • 需要根据'cat'所有数据框的唯一值创建自定义颜色图
    • 由于颜色相同,因此在图的侧面放置一个图例,而不要在每个图上都放置图例

导入和综合数据

import pandas as pd
import numpy as np  # used for random data
import random  # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch  # for custom legend
import seaborn as sns
import math import ceil  # determine correct number of subplot


# synthetic data
df_dict = dict()
for i in range(1, 7):
    np.random.seed(i)
    random.seed(i)
    data_length = 100
    data = {'cat': [random.choice(['A', 'B', 'C']) for _ in range(data_length)],
            'x': np.random.rand(data_length),
            'y': np.random.rand(data_length)}
    df_dict[i] = pd.DataFrame(data)


# display(df_dict[1].head())

  cat         x         y
0   A  0.417022  0.326645
1   C  0.720324  0.527058
2   A  0.000114  0.885942
3   B  0.302333  0.357270
4   A  0.146756  0.908535

创建颜色映射并绘制

# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()}  # get unique cats
colors = sns.color_palette('husl', n_colors=len(unique_cat))  # get a number of colors
cmap = dict(zip(unique_cat, colors))  # zip values to colors

# iterate through dictionary and plot
col_nums = 3  # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums)  # how many rows of plots
plt.figure(figsize=(10, 5))  # change the figure size as needed
for i, (k, v) in enumerate(df_dict.items(), 1):
    plt.subplot(row_nums, col_nums, i)  # create subplots
    p = sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap)
    p.legend_.remove()  # remove the individual plot legends
    plt.title(f'DataFrame: {k}')

plt.tight_layout()
# create legend from cmap
patches = [Patch(color=v, label=k) for k, v in cmap.items()]
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0)
plt.show()

在此处输入图片说明

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.