如何在Python中实现树?


Answers:


231

任意树

我推荐https://pypi.python.org/pypi/anytree(我是作者)

from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)

print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')

for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Udo
├── Marc
   └── Lian
└── Dan
    ├── Jet
    ├── Jan
    └── Joe

print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))

特征

anytree还具有强大的API,具有:

  • 简单的树创建
  • 简单的树修改
  • 预序树迭代
  • 后树迭代
  • 解析相对和绝对节点路径
  • 从一个节点到另一个节点。
  • 树渲染(请参见上面的示例)
  • 节点附加/分离联播

31
仅仅是最好的答案,其他人正在重新发明轮子。
Ondrej

66
这是一个很好的形式,可以告诉您您是答案中所推荐软件包的作者。
约翰Y

3
@ c0fec0de我爱你!这个库是惊人的,甚至具有可视化功能
奠定基础

2
@Ondrej很好,其他答案是更少的依赖关系,最初的问题确实询问了内置数据结构。虽然anytree这可能是一个很棒的库,但这是一个python问题,而不是Node.js问题。
罗布·罗斯

我通过Google遇到了这个答案。这个图书馆真的很好。我特别喜欢使用mixin类创建任何对象的树的功能!
Rÿck没什么

104

Python没有像Java那样广泛的“内置”数据结构。但是,由于Python是动态的,因此易于创建通用树。例如,一棵二叉树可能是:

class Tree:
    def __init__(self):
        self.left = None
        self.right = None
        self.data = None

您可以像这样使用它:

root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"

109
这并不能真正解释制作有用的树实现的方法。
Mike Graham

14
这个问题是用Python3标记的,因此不需要class Tree从对象派生
cfi 2012年

3
@cfi object有时只是一个准则:如果一个类没有从其他基类继承,则显式地从object继承。这也适用于嵌套类。请参阅Google Python样式指南
Konrad Reiche 2012年

16
@platzhirsch:请完整阅读并引用该准则:Google明确指出,Python 2代码按预期工作是必需的,建议提高与Py3的兼容性。在这里,我们谈论的是Py3代码。无需进行额外的传统打字。
cfi 2012年

13
那是一棵二叉树,而不是要求的普通树。
Michael Dorner

49

通用树是具有零个或多个子节点的节点,每个子节点都是一个适当的(树)节点。它与二叉树不同,它们是不同的数据结构,尽管两者共享一些术语。

Python中没有用于泛型树的内置数据结构,但可以使用类轻松实现。

class Tree(object):
    "Generic tree node."
    def __init__(self, name='root', children=None):
        self.name = name
        self.children = []
        if children is not None:
            for child in children:
                self.add_child(child)
    def __repr__(self):
        return self.name
    def add_child(self, node):
        assert isinstance(node, Tree)
        self.children.append(node)
#    *
#   /|\
#  1 2 +
#     / \
#    3   4
t = Tree('*', [Tree('1'),
               Tree('2'),
               Tree('+', [Tree('3'),
                          Tree('4')])])

太神奇了,它也可以很容易地用作图形!我看到的唯一问题是:如何区分左节点和右节点?
安杰洛Polotto

3
按儿童指数。在这种情况下,左将始终是子项[0]。
Freund Allein


20
class Node:
    """
    Class Node
    """
    def __init__(self, value):
        self.left = None
        self.data = value
        self.right = None

class Tree:
    """
    Class tree will provide a tree as well as utility functions.
    """

    def createNode(self, data):
        """
        Utility function to create a node.
        """
        return Node(data)

    def insert(self, node , data):
        """
        Insert function will insert a node into tree.
        Duplicate keys are not allowed.
        """
        #if tree is empty , return a root node
        if node is None:
            return self.createNode(data)
        # if data is smaller than parent , insert it into left side
        if data < node.data:
            node.left = self.insert(node.left, data)
        elif data > node.data:
            node.right = self.insert(node.right, data)

        return node


    def search(self, node, data):
        """
        Search function will search a node into tree.
        """
        # if root is None or root is the search data.
        if node is None or node.data == data:
            return node

        if node.data < data:
            return self.search(node.right, data)
        else:
            return self.search(node.left, data)



    def deleteNode(self,node,data):
        """
        Delete function will delete a node into tree.
        Not complete , may need some more scenarion that we can handle
        Now it is handling only leaf.
        """

        # Check if tree is empty.
        if node is None:
            return None

        # searching key into BST.
        if data < node.data:
            node.left = self.deleteNode(node.left, data)
        elif data > node.data:
            node.right = self.deleteNode(node.right, data)
        else: # reach to the node that need to delete from BST.
            if node.left is None and node.right is None:
                del node
            if node.left == None:
                temp = node.right
                del node
                return  temp
            elif node.right == None:
                temp = node.left
                del node
                return temp

        return node






    def traverseInorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traverseInorder(root.left)
            print root.data
            self.traverseInorder(root.right)

    def traversePreorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            print root.data
            self.traversePreorder(root.left)
            self.traversePreorder(root.right)

    def traversePostorder(self, root):
        """
        traverse function will print all the node in the tree.
        """
        if root is not None:
            self.traversePostorder(root.left)
            self.traversePostorder(root.right)
            print root.data


def main():
    root = None
    tree = Tree()
    root = tree.insert(root, 10)
    print root
    tree.insert(root, 20)
    tree.insert(root, 30)
    tree.insert(root, 40)
    tree.insert(root, 70)
    tree.insert(root, 60)
    tree.insert(root, 80)

    print "Traverse Inorder"
    tree.traverseInorder(root)

    print "Traverse Preorder"
    tree.traversePreorder(root)

    print "Traverse Postorder"
    tree.traversePostorder(root)


if __name__ == "__main__":
    main()

3
您可以仅添加一些注释来介绍您的代码和实现吗?
米歇尔·达米科2015年

感谢具有实用程序功能的完整二叉树实现。由于它是Python 2,因此我为需要Python 3版本的人创建了Binary Tree实现(Py3)的要点。
CᴴᴀZ

16

没有内置树,但是您可以通过从List继承Node类型并编写遍历方法来轻松构造树。如果您这样做,我发现bisect很有用。

您可以浏览PyPi上的许多实现。

如果我没记错的话,Python标准库不包含树数据结构,原因与.NET基类库不相同:内存的局部性降低,导致更多的缓存丢失。在现代处理器上,通常只将一大块内存带入缓存通常会更快,而“指针丰富”的数据结构抵消了这种优势。


2
仅供参考:网路上充满了对Boost的仇恨。显然,这应该是一个巨大的难题,特别是因为已经停止了对此的支持。因此,我建议您远离该位置
inspectorG4dget 2010年

谢谢。我个人没有遇到任何麻烦,但是我不想误导,所以我删除了该参考。
贾斯汀·R.2010年

11

我把一棵有根的树当字典{child:parent}。因此,例如对于根节点0,一棵树可能看起来像这样:

tree={1:0, 2:0, 3:1, 4:2, 5:3}

这种结构使得沿着从任何节点到根的路径轻松向上,这与我正在研究的问题有关。


1
这是我一直考虑的方法,直到我看到答案为止。尽管由于一棵树是有两个孩子的父母,所以如果您想下山,可以这样做{parent:[leftchild,rightchild]}
JFA 2014年

1
另一种方法是使用列表列表,其中列表中的第一个(或更多)元素是节点值,随后嵌套的两个列表代表其左和右子树(对于n元树,则更多)。
pepr 2014年

9

格雷格·休吉尔(Greg Hewgill)的答案很好,但是如果每个级别需要更多节点,则可以使用列表|字典来创建它们:然后使用方法按名称或顺序(例如id)访问它们

class node(object):
    def __init__(self):
        self.name=None
        self.node=[]
        self.otherInfo = None
        self.prev=None
    def nex(self,child):
        "Gets a node by number"
        return self.node[child]
    def prev(self):
        return self.prev
    def goto(self,data):
        "Gets the node by name"
        for child in range(0,len(self.node)):
            if(self.node[child].name==data):
                return self.node[child]
    def add(self):
        node1=node()
        self.node.append(node1)
        node1.prev=self
        return node1

现在只需创建一个根并进行构建即可:例如:

tree=node()  #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever 
tree=tree.add() #add a node to the root
tree.name="node1" #name it

    root
   /
child1

tree=tree.add()
tree.name="grandchild1"

       root
      /
   child1
   /
grandchild1

tree=tree.prev()
tree=tree.add()
tree.name="gchild2"

          root
           /
        child1
        /    \
grandchild1 gchild2

tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"

              root
             /   \
        child1  child2
       /     \
grandchild1 gchild2


tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"

              root
              /   \
         changed   child2
        /      \
  grandchild1  gchild2

这应该足以让您开始弄清楚如何进行这项工作


该答案中缺少某些内容,过去两天我一直在尝试此解决方案,我认为您在对象添加方法中有一些逻辑流程。我将提交对这个问题的答案,请检查一下并告诉我是否可以提供帮助。
MAULIK MODI '18

8
class Tree(dict):
    """A tree implementation using python's autovivification feature."""
    def __missing__(self, key):
        value = self[key] = type(self)()
        return value

    #cast a (nested) dict to a (nested) Tree class
    def __init__(self, data={}):
        for k, data in data.items():
            if isinstance(data, dict):
                self[k] = type(self)(data)
            else:
                self[k] = data

可以用作字典,但可以提供所需的许多嵌套字典。请尝试以下操作:

your_tree = Tree()

your_tree['a']['1']['x']  = '@'
your_tree['a']['1']['y']  = '#'
your_tree['a']['2']['x']  = '$'
your_tree['a']['3']       = '%'
your_tree['b']            = '*'

将提供一个嵌套的字典...实际上可以像一棵树一样工作。

{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}

...如果您已经有一个字典,它将把每个级别投射到一棵树上:

d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)

print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch

这样,您可以根据需要保持编辑/添加/删除每个字典级别。遍历等所有dict方法仍然适用。


2
您选择扩展dict而不是有原因defaultdict吗?从我的测试中,扩展defaultdict而不是dict,然后添加self.default_factory = type(self)到init的顶部应该具有相同的功能。
罗伯·罗斯

我可能在这里丢失了一些内容,您如何浏览此结构?例如,从孩子到父母或兄弟姐妹似乎很难走
Stormsson

6

我已经使用嵌套字典实现了树。这很容易做到,并且对我来说适用于相当大的数据集。我在下面发布了一个示例,您可以在Google代码中查看更多示例

  def addBallotToTree(self, tree, ballotIndex, ballot=""):
    """Add one ballot to the tree.

    The root of the tree is a dictionary that has as keys the indicies of all 
    continuing and winning candidates.  For each candidate, the value is also
    a dictionary, and the keys of that dictionary include "n" and "bi".
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.

    If candidate c is a winning candidate, then that portion of the tree is
    expanded to indicate the breakdown of the subsequently ranked candidates.
    In this situation, additional keys are added to the tree[c] dictionary
    corresponding to subsequently ranked candidates.
    tree[c]["n"] is the number of ballots that rank candidate c first.
    tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
    tree[c][d]["n"] is the number of ballots that rank c first and d second.
    tree[c][d]["bi"] is a list of the corresponding ballot indices.

    Where the second ranked candidates is also a winner, then the tree is 
    expanded to the next level.  

    Losing candidates are ignored and treated as if they do not appear on the 
    ballots.  For example, tree[c][d]["n"] is the total number of ballots
    where candidate c is the first non-losing candidate, c is a winner, and
    d is the next non-losing candidate.  This will include the following
    ballots, where x represents a losing candidate:
    [c d]
    [x c d]
    [c x d]
    [x c x x d]

    During the count, the tree is dynamically updated as candidates change
    their status.  The parameter "tree" to this method may be the root of the
    tree or may be a sub-tree.
    """

    if ballot == "":
      # Add the complete ballot to the tree
      weight, ballot = self.b.getWeightedBallot(ballotIndex)
    else:
      # When ballot is not "", we are adding a truncated ballot to the tree,
      # because a higher-ranked candidate is a winner.
      weight = self.b.getWeight(ballotIndex)

    # Get the top choice among candidates still in the running
    # Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
    # we are looking for the top choice over a truncated ballot.
    for c in ballot:
      if c in self.continuing | self.winners:
        break # c is the top choice so stop
    else:
      c = None # no candidates left on this ballot

    if c is None:
      # This will happen if the ballot contains only winning and losing
      # candidates.  The ballot index will not need to be transferred
      # again so it can be thrown away.
      return

    # Create space if necessary.
    if not tree.has_key(c):
      tree[c] = {}
      tree[c]["n"] = 0
      tree[c]["bi"] = []

    tree[c]["n"] += weight

    if c in self.winners:
      # Because candidate is a winner, a portion of the ballot goes to
      # the next candidate.  Pass on a truncated ballot so that the same
      # candidate doesn't get counted twice.
      i = ballot.index(c)
      ballot2 = ballot[i+1:]
      self.addBallotToTree(tree[c], ballotIndex, ballot2)
    else:
      # Candidate is in continuing so we stop here.
      tree[c]["bi"].append(ballotIndex)

5

我已经在我的网站上发布了Python [3]树实现:http : //www.quesucede.com/page/show/id/python_3_tree_implementation

希望它有用

好的,这是代码:

import uuid

def sanitize_id(id):
    return id.strip().replace(" ", "")

(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)

class Node:

    def __init__(self, name, identifier=None, expanded=True):
        self.__identifier = (str(uuid.uuid1()) if identifier is None else
                sanitize_id(str(identifier)))
        self.name = name
        self.expanded = expanded
        self.__bpointer = None
        self.__fpointer = []

    @property
    def identifier(self):
        return self.__identifier

    @property
    def bpointer(self):
        return self.__bpointer

    @bpointer.setter
    def bpointer(self, value):
        if value is not None:
            self.__bpointer = sanitize_id(value)

    @property
    def fpointer(self):
        return self.__fpointer

    def update_fpointer(self, identifier, mode=_ADD):
        if mode is _ADD:
            self.__fpointer.append(sanitize_id(identifier))
        elif mode is _DELETE:
            self.__fpointer.remove(sanitize_id(identifier))
        elif mode is _INSERT:
            self.__fpointer = [sanitize_id(identifier)]

class Tree:

    def __init__(self):
        self.nodes = []

    def get_index(self, position):
        for index, node in enumerate(self.nodes):
            if node.identifier == position:
                break
        return index

    def create_node(self, name, identifier=None, parent=None):

        node = Node(name, identifier)
        self.nodes.append(node)
        self.__update_fpointer(parent, node.identifier, _ADD)
        node.bpointer = parent
        return node

    def show(self, position, level=_ROOT):
        queue = self[position].fpointer
        if level == _ROOT:
            print("{0} [{1}]".format(self[position].name,
                                     self[position].identifier))
        else:
            print("\t"*level, "{0} [{1}]".format(self[position].name,
                                                 self[position].identifier))
        if self[position].expanded:
            level += 1
            for element in queue:
                self.show(element, level)  # recursive call

    def expand_tree(self, position, mode=_DEPTH):
        # Python generator. Loosly based on an algorithm from 'Essential LISP' by
        # John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
        yield position
        queue = self[position].fpointer
        while queue:
            yield queue[0]
            expansion = self[queue[0]].fpointer
            if mode is _DEPTH:
                queue = expansion + queue[1:]  # depth-first
            elif mode is _WIDTH:
                queue = queue[1:] + expansion  # width-first

    def is_branch(self, position):
        return self[position].fpointer

    def __update_fpointer(self, position, identifier, mode):
        if position is None:
            return
        else:
            self[position].update_fpointer(identifier, mode)

    def __update_bpointer(self, position, identifier):
        self[position].bpointer = identifier

    def __getitem__(self, key):
        return self.nodes[self.get_index(key)]

    def __setitem__(self, key, item):
        self.nodes[self.get_index(key)] = item

    def __len__(self):
        return len(self.nodes)

    def __contains__(self, identifier):
        return [node.identifier for node in self.nodes
                if node.identifier is identifier]

if __name__ == "__main__":

    tree = Tree()
    tree.create_node("Harry", "harry")  # root node
    tree.create_node("Jane", "jane", parent = "harry")
    tree.create_node("Bill", "bill", parent = "harry")
    tree.create_node("Joe", "joe", parent = "jane")
    tree.create_node("Diane", "diane", parent = "jane")
    tree.create_node("George", "george", parent = "diane")
    tree.create_node("Mary", "mary", parent = "diane")
    tree.create_node("Jill", "jill", parent = "george")
    tree.create_node("Carol", "carol", parent = "jill")
    tree.create_node("Grace", "grace", parent = "bill")
    tree.create_node("Mark", "mark", parent = "jane")

    print("="*80)
    tree.show("harry")
    print("="*80)
    for node in tree.expand_tree("harry", mode=_WIDTH):
        print(node)
    print("="*80)

4

如果有人需要一种更简单的方法,则树只是递归嵌套的列表(因为set不可散列):

[root, [child_1, [[child_11, []], [child_12, []]], [child_2, []]]]

其中每个分支都是一对:[ object, [children] ]
每个叶子都是一对:[ object, [] ]

但是,如果您需要一个带有方法的类,则可以使用anytree。


1

您需要什么操作?在python中,通常会使用dict或带有bisect模块的列表来解决问题。

PyPI上有很多很多树实现,而许多树类型对于使用纯Python实现自己几乎是微不足道的。但是,这几乎没有必要。


0

另一个基于Bruno答案的树实现松散地实现了:

class Node:
    def __init__(self):
        self.name: str = ''
        self.children: List[Node] = []
        self.parent: Node = self

    def __getitem__(self, i: int) -> 'Node':
        return self.children[i]

    def add_child(self):
        child = Node()
        self.children.append(child)
        child.parent = self
        return child

    def __str__(self) -> str:
        def _get_character(x, left, right) -> str:
            if x < left:
                return '/'
            elif x >= right:
                return '\\'
            else:
                return '|'

        if len(self.children):
            children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
            widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
            max_height: int = max(map(len, children_lines))
            total_width: int = sum(widths) + len(widths) - 1
            left: int = (total_width - len(self.name) + 1) // 2
            right: int = left + len(self.name)

            return '\n'.join((
                self.name.center(total_width),
                ' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
                             widths, accumulate(widths, add))),
                *map(
                    lambda row: ' '.join(map(
                        lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
                        children_lines)),
                    range(max_height))))
        else:
            return self.name

以及如何使用它的示例:

tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)

哪个应该输出:

                        根节点                        
     // \              
子节点0子节点1子节点2        
                   | / \       
             孙子1.0孙子2.0孙子2.1

0

我建议使用networkx库。

NetworkX是一个Python软件包,用于创建,操纵和研究复杂网络的结构,动力学和功能。

构造树的示例:

import networkx as nx
G = nx.Graph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('B', 'D')
G.add_edge('A', 'E')
G.add_edge('E', 'F')

我不确定您所说的“ 通用树” 是什么意思,
但是库使每个节点成为任何可哈希对象,并且对每个节点具有的子代数没有限制。

该库还提供与树和可视化功能有关的图形算法


-2

如果要创建树数据结构,则首先必须创建treeElement对象。如果创建treeElement对象,则可以决定树的行为。

为此,请使用TreeElement类:

class TreeElement (object):

def __init__(self):
    self.elementName = None
    self.element = []
    self.previous = None
    self.elementScore = None
    self.elementParent = None
    self.elementPath = []
    self.treeLevel = 0

def goto(self, data):
    for child in range(0, len(self.element)):
        if (self.element[child].elementName == data):
            return self.element[child]

def add(self):

    single_element = TreeElement()
    single_element.elementName = self.elementName
    single_element.previous = self.elementParent
    single_element.elementScore = self.elementScore
    single_element.elementPath = self.elementPath
    single_element.treeLevel = self.treeLevel

    self.element.append(single_element)

    return single_element

现在,我们必须使用此元素来创建树,在此示例中,我将使用A *树。

class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
    return;

# GetAction Function: Called with every frame
def getAction(self, state):

    # Sorting function for the queue
    def sortByHeuristic(each_element):

        if each_element.elementScore:
            individual_score = each_element.elementScore[0][0] + each_element.treeLevel
        else:
            individual_score = admissibleHeuristic(each_element)

        return individual_score

    # check the game is over or not
    if state.isWin():
        print('Job is done')
        return Directions.STOP
    elif state.isLose():
        print('you lost')
        return Directions.STOP

    # Create empty list for the next states
    astar_queue = []
    astar_leaf_queue = []
    astar_tree_level = 0
    parent_tree_level = 0

    # Create Tree from the give node element
    astar_tree = TreeElement()
    astar_tree.elementName = state
    astar_tree.treeLevel = astar_tree_level
    astar_tree = astar_tree.add()

    # Add first element into the queue
    astar_queue.append(astar_tree)

    # Traverse all the elements of the queue
    while astar_queue:

        # Sort the element from the queue
        if len(astar_queue) > 1:
            astar_queue.sort(key=lambda x: sortByHeuristic(x))

        # Get the first node from the queue
        astar_child_object = astar_queue.pop(0)
        astar_child_state = astar_child_object.elementName

        # get all legal actions for the current node
        current_actions = astar_child_state.getLegalPacmanActions()

        if current_actions:

            # get all the successor state for these actions
            for action in current_actions:

                # Get the successor of the current node
                next_state = astar_child_state.generatePacmanSuccessor(action)

                if next_state:

                    # evaluate the successor states using scoreEvaluation heuristic
                    element_scored = [(admissibleHeuristic(next_state), action)]

                    # Increase the level for the child
                    parent_tree_level = astar_tree.goto(astar_child_state)
                    if parent_tree_level:
                        astar_tree_level = parent_tree_level.treeLevel + 1
                    else:
                        astar_tree_level += 1

                    # create tree for the finding the data
                    astar_tree.elementName = next_state
                    astar_tree.elementParent = astar_child_state
                    astar_tree.elementScore = element_scored
                    astar_tree.elementPath.append(astar_child_state)
                    astar_tree.treeLevel = astar_tree_level
                    astar_object = astar_tree.add()

                    # If the state exists then add that to the queue
                    astar_queue.append(astar_object)

                else:
                    # Update the value leaf into the queue
                    astar_leaf_state = astar_tree.goto(astar_child_state)
                    astar_leaf_queue.append(astar_leaf_state)

您可以从对象中添加/删除任何元素,但可以使结构完整。


-4
def iterative_bfs(graph, start):
    '''iterative breadth first search from start'''
    bfs_tree = {start: {"parents":[], "children":[], "level":0}}
    q = [start]
    while q:
        current = q.pop(0)
        for v in graph[current]:
            if not v in bfs_tree:
                bfs_tree[v]={"parents":[current], "children":[], "level": bfs_tree[current]["level"] + 1}
                bfs_tree[current]["children"].append(v)
                q.append(v)
            else:
                if bfs_tree[v]["level"] > bfs_tree[current]["level"]:
                    bfs_tree[current]["children"].append(v)
                    bfs_tree[v]["parents"].append(current)

这似乎根本无法以任何可读的方式回答问题。
AlBlue
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.