我在玩timeit时发现,对小字符串进行简单的列表理解要比对小字符串列表进行相同的操作花费的时间更长。有什么解释吗?时间几乎是原来的1.35倍。
>>> from timeit import timeit
>>> timeit("[x for x in 'abc']")
2.0691067844831528
>>> timeit("[x for x in ['a', 'b', 'c']]")
1.5286479570345861
导致此情况的较低级别发生了什么?
我在玩timeit时发现,对小字符串进行简单的列表理解要比对小字符串列表进行相同的操作花费的时间更长。有什么解释吗?时间几乎是原来的1.35倍。
>>> from timeit import timeit
>>> timeit("[x for x in 'abc']")
2.0691067844831528
>>> timeit("[x for x in ['a', 'b', 'c']]")
1.5286479570345861
导致此情况的较低级别发生了什么?
Answers:
对于Python 2,一旦消除了很多开销,实际的速度差异就会接近70%(或更高)。
对象创建没有错。这两种方法都不会创建新对象,因为会缓存一个字符的字符串。
区别并不明显,但可能是由于对类型和格式正确的字符串索引进行了大量检查而造成的。由于很有必要检查返回的商品,因此很有可能。
列表索引非常快。
>>> python3 -m timeit '[x for x in "abc"]'
1000000 loops, best of 3: 0.388 usec per loop
>>> python3 -m timeit '[x for x in ["a", "b", "c"]]'
1000000 loops, best of 3: 0.436 usec per loop
这与您发现的内容不同...
然后,您必须使用Python 2。
>>> python2 -m timeit '[x for x in "abc"]'
1000000 loops, best of 3: 0.309 usec per loop
>>> python2 -m timeit '[x for x in ["a", "b", "c"]]'
1000000 loops, best of 3: 0.212 usec per loop
让我们解释两个版本之间的区别。我将检查编译后的代码。
对于Python 3:
import dis
def list_iterate():
[item for item in ["a", "b", "c"]]
dis.dis(list_iterate)
#>>> 4 0 LOAD_CONST 1 (<code object <listcomp> at 0x7f4d06b118a0, file "", line 4>)
#>>> 3 LOAD_CONST 2 ('list_iterate.<locals>.<listcomp>')
#>>> 6 MAKE_FUNCTION 0
#>>> 9 LOAD_CONST 3 ('a')
#>>> 12 LOAD_CONST 4 ('b')
#>>> 15 LOAD_CONST 5 ('c')
#>>> 18 BUILD_LIST 3
#>>> 21 GET_ITER
#>>> 22 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
#>>> 25 POP_TOP
#>>> 26 LOAD_CONST 0 (None)
#>>> 29 RETURN_VALUE
def string_iterate():
[item for item in "abc"]
dis.dis(string_iterate)
#>>> 21 0 LOAD_CONST 1 (<code object <listcomp> at 0x7f4d06b17150, file "", line 21>)
#>>> 3 LOAD_CONST 2 ('string_iterate.<locals>.<listcomp>')
#>>> 6 MAKE_FUNCTION 0
#>>> 9 LOAD_CONST 3 ('abc')
#>>> 12 GET_ITER
#>>> 13 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
#>>> 16 POP_TOP
#>>> 17 LOAD_CONST 0 (None)
#>>> 20 RETURN_VALUE
您会在此处看到,由于每次都建立列表,列表变体可能会变慢。
这是
9 LOAD_CONST 3 ('a')
12 LOAD_CONST 4 ('b')
15 LOAD_CONST 5 ('c')
18 BUILD_LIST 3
部分。字符串变体仅具有
9 LOAD_CONST 3 ('abc')
您可以检查一下是否确实有所不同:
def string_iterate():
[item for item in ("a", "b", "c")]
dis.dis(string_iterate)
#>>> 35 0 LOAD_CONST 1 (<code object <listcomp> at 0x7f4d068be660, file "", line 35>)
#>>> 3 LOAD_CONST 2 ('string_iterate.<locals>.<listcomp>')
#>>> 6 MAKE_FUNCTION 0
#>>> 9 LOAD_CONST 6 (('a', 'b', 'c'))
#>>> 12 GET_ITER
#>>> 13 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
#>>> 16 POP_TOP
#>>> 17 LOAD_CONST 0 (None)
#>>> 20 RETURN_VALUE
这产生了
9 LOAD_CONST 6 (('a', 'b', 'c'))
因为元组是不可变的。测试:
>>> python3 -m timeit '[x for x in ("a", "b", "c")]'
1000000 loops, best of 3: 0.369 usec per loop
太好了,赶快行动吧。
对于Python 2:
def list_iterate():
[item for item in ["a", "b", "c"]]
dis.dis(list_iterate)
#>>> 2 0 BUILD_LIST 0
#>>> 3 LOAD_CONST 1 ('a')
#>>> 6 LOAD_CONST 2 ('b')
#>>> 9 LOAD_CONST 3 ('c')
#>>> 12 BUILD_LIST 3
#>>> 15 GET_ITER
#>>> >> 16 FOR_ITER 12 (to 31)
#>>> 19 STORE_FAST 0 (item)
#>>> 22 LOAD_FAST 0 (item)
#>>> 25 LIST_APPEND 2
#>>> 28 JUMP_ABSOLUTE 16
#>>> >> 31 POP_TOP
#>>> 32 LOAD_CONST 0 (None)
#>>> 35 RETURN_VALUE
def string_iterate():
[item for item in "abc"]
dis.dis(string_iterate)
#>>> 2 0 BUILD_LIST 0
#>>> 3 LOAD_CONST 1 ('abc')
#>>> 6 GET_ITER
#>>> >> 7 FOR_ITER 12 (to 22)
#>>> 10 STORE_FAST 0 (item)
#>>> 13 LOAD_FAST 0 (item)
#>>> 16 LIST_APPEND 2
#>>> 19 JUMP_ABSOLUTE 7
#>>> >> 22 POP_TOP
#>>> 23 LOAD_CONST 0 (None)
#>>> 26 RETURN_VALUE
奇怪的是,我们具有相同的列表构建,但是这样做的速度仍然更快。Python 2的运行速度异常快。
让我们删除理解和重新计时。这_ =
是为了防止它被优化。
>>> python3 -m timeit '_ = ["a", "b", "c"]'
10000000 loops, best of 3: 0.0707 usec per loop
>>> python3 -m timeit '_ = "abc"'
100000000 loops, best of 3: 0.0171 usec per loop
我们可以看到初始化不足以说明版本之间的差异(这些数字很小)!因此,我们可以得出结论,Python 3的理解速度较慢。随着Python 3将理解方式更改为具有更安全的作用域,这才有意义。
好吧,现在提高基准(我只是删除不是迭代的开销)。这通过预先分配来删除迭代器的构建:
>>> python3 -m timeit -s 'iterable = "abc"' '[x for x in iterable]'
1000000 loops, best of 3: 0.387 usec per loop
>>> python3 -m timeit -s 'iterable = ["a", "b", "c"]' '[x for x in iterable]'
1000000 loops, best of 3: 0.368 usec per loop
>>> python2 -m timeit -s 'iterable = "abc"' '[x for x in iterable]'
1000000 loops, best of 3: 0.309 usec per loop
>>> python2 -m timeit -s 'iterable = ["a", "b", "c"]' '[x for x in iterable]'
10000000 loops, best of 3: 0.164 usec per loop
我们可以检查调用iter
是否是开销:
>>> python3 -m timeit -s 'iterable = "abc"' 'iter(iterable)'
10000000 loops, best of 3: 0.099 usec per loop
>>> python3 -m timeit -s 'iterable = ["a", "b", "c"]' 'iter(iterable)'
10000000 loops, best of 3: 0.1 usec per loop
>>> python2 -m timeit -s 'iterable = "abc"' 'iter(iterable)'
10000000 loops, best of 3: 0.0913 usec per loop
>>> python2 -m timeit -s 'iterable = ["a", "b", "c"]' 'iter(iterable)'
10000000 loops, best of 3: 0.0854 usec per loop
不,不是。差别太小,尤其是对于Python 3。
因此,让我们降低整体速度,从而消除更多不必要的开销!目的是使迭代时间更长,从而节省时间。
>>> python3 -m timeit -s 'import random; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' '[x for x in iterable]'
100 loops, best of 3: 3.12 msec per loop
>>> python3 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' '[x for x in iterable]'
100 loops, best of 3: 2.77 msec per loop
>>> python2 -m timeit -s 'import random; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' '[x for x in iterable]'
100 loops, best of 3: 2.32 msec per loop
>>> python2 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' '[x for x in iterable]'
100 loops, best of 3: 2.09 msec per loop
这实际上并没有太大变化,但有所帮助。
因此,消除理解。开销并不是问题的一部分:
>>> python3 -m timeit -s 'import random; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'for x in iterable: pass'
1000 loops, best of 3: 1.71 msec per loop
>>> python3 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'for x in iterable: pass'
1000 loops, best of 3: 1.36 msec per loop
>>> python2 -m timeit -s 'import random; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'for x in iterable: pass'
1000 loops, best of 3: 1.27 msec per loop
>>> python2 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'for x in iterable: pass'
1000 loops, best of 3: 935 usec per loop
这还差不多!通过使用deque
迭代,我们仍然可以稍微快一些。基本上是一样的,但是速度更快:
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 777 usec per loop
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 405 usec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 805 usec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 438 usec per loop
令我印象深刻的是,Unicode在字节串方面具有竞争力。我们可以通过尝试在bytes
和unicode
两者中进行显式检查:
bytes
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = b"".join(chr(random.randint(0, 127)).encode("ascii") for _ in range(100000))' 'deque(iterable, maxlen=0)' :(
1000 loops, best of 3: 571 usec per loop
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = [chr(random.randint(0, 127)).encode("ascii") for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 394 usec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = b"".join(chr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 757 usec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 438 usec per loop
在这里,您可以看到Python 3实际上比Python 2 更快。
unicode
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = u"".join( chr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 800 usec per loop
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = [ chr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 394 usec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = u"".join(unichr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 1.07 msec per loop
>>> python2 -m timeit -s 'import random; from collections import deque; iterable = [unichr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 469 usec per loop
同样,Python 3更快,尽管这是可以预料的(str
在Python 3中引起了很多关注)。
实际上,这unicode
- bytes
差异很小,令人印象深刻。
因此,让我们分析一下这种情况,因为它对我来说既快速又方便:
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 777 usec per loop
>>> python3 -m timeit -s 'import random; from collections import deque; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'deque(iterable, maxlen=0)'
1000 loops, best of 3: 405 usec per loop
实际上,我们可以排除蒂姆·彼得(Tim Peter)提出10次支持的答案!
>>> foo = iterable[123]
>>> iterable[36] is foo
True
但这值得一提:索引成本。区别可能在于索引,因此删除迭代并仅索引:
>>> python3 -m timeit -s 'import random; iterable = "".join(chr(random.randint(0, 127)) for _ in range(100000))' 'iterable[123]'
10000000 loops, best of 3: 0.0397 usec per loop
>>> python3 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'iterable[123]'
10000000 loops, best of 3: 0.0374 usec per loop
差异似乎很小,但是至少一半的成本是间接费用:
>>> python3 -m timeit -s 'import random; iterable = [chr(random.randint(0, 127)) for _ in range(100000)]' 'iterable; 123'
100000000 loops, best of 3: 0.0173 usec per loop
因此,速度差足以决定对此负责。我认为。
那么为什么索引列表这么快呢?
好吧,我会回来给你这一点,但我的猜测是的是倒在支票实习字符串(或缓存的字符,如果它是一个独立的机构)。这将不如最佳速度快。但是我会去检查源代码(尽管我对C语言不太满意):)。
所以这是来源:
static PyObject *
unicode_getitem(PyObject *self, Py_ssize_t index)
{
void *data;
enum PyUnicode_Kind kind;
Py_UCS4 ch;
PyObject *res;
if (!PyUnicode_Check(self) || PyUnicode_READY(self) == -1) {
PyErr_BadArgument();
return NULL;
}
if (index < 0 || index >= PyUnicode_GET_LENGTH(self)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return NULL;
}
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
ch = PyUnicode_READ(kind, data, index);
if (ch < 256)
return get_latin1_char(ch);
res = PyUnicode_New(1, ch);
if (res == NULL)
return NULL;
kind = PyUnicode_KIND(res);
data = PyUnicode_DATA(res);
PyUnicode_WRITE(kind, data, 0, ch);
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
从顶部走,我们将进行一些检查。这些无聊。然后一些分配,这也应该很无聊。第一个有趣的行是
ch = PyUnicode_READ(kind, data, index);
但是我们希望这很快,因为我们正在通过索引从连续的C数组读取数据。结果ch
小于256,因此我们将在中返回缓存的字符get_latin1_char(ch)
。
因此,我们将运行(删除第一个检查)
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
ch = PyUnicode_READ(kind, data, index);
return get_latin1_char(ch);
哪里
#define PyUnicode_KIND(op) \
(assert(PyUnicode_Check(op)), \
assert(PyUnicode_IS_READY(op)), \
((PyASCIIObject *)(op))->state.kind)
(这很无聊,因为断言在调试中会被忽略(因此我可以检查它们是否很快),((PyASCIIObject *)(op))->state.kind)
并且(我认为)是间接调用和C级强制转换);
#define PyUnicode_DATA(op) \
(assert(PyUnicode_Check(op)), \
PyUnicode_IS_COMPACT(op) ? _PyUnicode_COMPACT_DATA(op) : \
_PyUnicode_NONCOMPACT_DATA(op))
(由于类似的原因,这也很无聊,假设宏(Something_CAPITALIZED
)都很快),
#define PyUnicode_READ(kind, data, index) \
((Py_UCS4) \
((kind) == PyUnicode_1BYTE_KIND ? \
((const Py_UCS1 *)(data))[(index)] : \
((kind) == PyUnicode_2BYTE_KIND ? \
((const Py_UCS2 *)(data))[(index)] : \
((const Py_UCS4 *)(data))[(index)] \
) \
))
(涉及索引,但实际上一点也不慢),并且
static PyObject*
get_latin1_char(unsigned char ch)
{
PyObject *unicode = unicode_latin1[ch];
if (!unicode) {
unicode = PyUnicode_New(1, ch);
if (!unicode)
return NULL;
PyUnicode_1BYTE_DATA(unicode)[0] = ch;
assert(_PyUnicode_CheckConsistency(unicode, 1));
unicode_latin1[ch] = unicode;
}
Py_INCREF(unicode);
return unicode;
}
这证实了我的怀疑:
这被缓存:
PyObject *unicode = unicode_latin1[ch];
这应该很快。在if (!unicode)
没有运行,所以它是在这种情况下相当于字面上
PyObject *unicode = unicode_latin1[ch];
Py_INCREF(unicode);
return unicode;
坦白地说,在测试assert
s 之后(通过禁用它们[我认为它可以在C级断言上运行...]),只有看起来很慢的部分是:
PyUnicode_IS_COMPACT(op)
_PyUnicode_COMPACT_DATA(op)
_PyUnicode_NONCOMPACT_DATA(op)
哪个是:
#define PyUnicode_IS_COMPACT(op) \
(((PyASCIIObject*)(op))->state.compact)
(和以前一样快),
#define _PyUnicode_COMPACT_DATA(op) \
(PyUnicode_IS_ASCII(op) ? \
((void*)((PyASCIIObject*)(op) + 1)) : \
((void*)((PyCompactUnicodeObject*)(op) + 1)))
(如果宏IS_ASCII
很快,则很快),以及
#define _PyUnicode_NONCOMPACT_DATA(op) \
(assert(((PyUnicodeObject*)(op))->data.any), \
((((PyUnicodeObject *)(op))->data.any)))
(因为它是断言,间接寻址和强制转换,因此速度也很快)。
因此,我们进入(兔子洞)以:
PyUnicode_IS_ASCII
这是
#define PyUnicode_IS_ASCII(op) \
(assert(PyUnicode_Check(op)), \
assert(PyUnicode_IS_READY(op)), \
((PyASCIIObject*)op)->state.ascii)
嗯...似乎也很快...
好吧,但让我们将其与进行比较PyList_GetItem
。(是的,感谢蒂姆·彼得斯(Tim Peters)为我提供了更多的工作要做:P。)
PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
if (i < 0 || i >= Py_SIZE(op)) {
if (indexerr == NULL) {
indexerr = PyUnicode_FromString(
"list index out of range");
if (indexerr == NULL)
return NULL;
}
PyErr_SetObject(PyExc_IndexError, indexerr);
return NULL;
}
return ((PyListObject *)op) -> ob_item[i];
}
我们可以看到,在非错误情况下,这只会运行:
PyList_Check(op)
Py_SIZE(op)
((PyListObject *)op) -> ob_item[i]
哪里PyList_Check
是
#define PyList_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_LIST_SUBCLASS)
(TABS!TABS !!!)(issue21587)在5分钟内修复并合并。就像...是的。该死的。他们让Skeet感到羞耻。
#define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size)
#define PyType_FastSubclass(t,f) PyType_HasFeature(t,f)
#ifdef Py_LIMITED_API
#define PyType_HasFeature(t,f) ((PyType_GetFlags(t) & (f)) != 0)
#else
#define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0)
#endif
因此,除非Py_LIMITED_API
启用,否则通常这确实是微不足道的(两个间接调用和几个布尔检查)……???
然后是索引和强制转换(((PyListObject *)op) -> ob_item[i]
),我们完成了。
因此,对列表的检查肯定会更少,并且速度差异很小肯定意味着它可能是相关的。
我认为通常来说,(->)
Unicode的类型检查和间接性更多。似乎我遗漏了一点,但是呢?
get_latin1_char()
技巧不再存在unicode_getitem()
,而是在较低级别unicode_char
。所以现在有另一个级别的函数调用-是否调用(取决于所使用的编译器和优化标志)。在这一详细程度上,根本没有可靠的答案;-)
当您遍历大多数容器对象(列表,元组,字典,...)时,迭代器会在容器中传递对象。
但是,当您遍历字符串时,必须为传递的每个字符创建一个新对象-字符串不是“容器”,就如同列表是容器一样。在迭代创建对象之前,字符串中的各个字符不作为不同的对象存在。
is
。这听起来很正确的,但我真的不认为它可以。
stringobject.c
显示__getitem__
对于字符串来说,它只是从存储的1个字符的字符串表中检索结果,因此这些字符串的分配成本仅产生一次。
s = chr(256)
,s is chr(256)
返回False
-独自知道类型是不够的,因为盖触发数据下存在的特殊情况下丘值。
创建字符串的迭代器可能会招致麻烦。而数组在实例化时已经包含一个迭代器。
编辑:
>>> timeit("[x for x in ['a','b','c']]")
0.3818681240081787
>>> timeit("[x for x in 'abc']")
0.3732869625091553
这是使用2.7运行的,但是在我的Mac book pro i7上。这可能是系统配置不同的结果。