最近最少使用(LRU)高速缓存将首先丢弃最近最少使用的项目。如何设计和实现这种高速缓存类?设计要求如下:
1)尽快找到商品
2)一旦缓存未命中并且缓存已满,我们需要尽快替换最近最少使用的项目。
如何从设计模式和算法设计上分析和实现这个问题?
Answers:
链表+指向链表节点的指针的哈希表是实现LRU缓存的常用方法。这给出了O(1)操作(假设一个不错的哈希值)。这样做的优势(为O(1)):您只需锁定整个结构即可创建多线程版本。您不必担心粒度锁定等。
简而言之,它的工作方式:
在访问值时,将链接列表中的相应节点移到头部。
当您需要从缓存中删除一个值时,可以从尾端删除。
将值添加到缓存时,只需将其放在链接列表的开头即可。
感谢doublep,这里是带有C ++实现的站点:Miscellaneous Container Templates。
这是我的LRU缓存的简单示例c ++实现,结合了hash(unordered_map)和list。列表中的项目具有访问地图的键,而地图上的项目具有用于访问列表的列表的迭代器。
#include <list>
#include <unordered_map>
#include <assert.h>
using namespace std;
template <class KEY_T, class VAL_T> class LRUCache{
private:
list< pair<KEY_T,VAL_T> > item_list;
unordered_map<KEY_T, decltype(item_list.begin()) > item_map;
size_t cache_size;
private:
void clean(void){
while(item_map.size()>cache_size){
auto last_it = item_list.end(); last_it --;
item_map.erase(last_it->first);
item_list.pop_back();
}
};
public:
LRUCache(int cache_size_):cache_size(cache_size_){
;
};
void put(const KEY_T &key, const VAL_T &val){
auto it = item_map.find(key);
if(it != item_map.end()){
item_list.erase(it->second);
item_map.erase(it);
}
item_list.push_front(make_pair(key,val));
item_map.insert(make_pair(key, item_list.begin()));
clean();
};
bool exist(const KEY_T &key){
return (item_map.count(key)>0);
};
VAL_T get(const KEY_T &key){
assert(exist(key));
auto it = item_map.find(key);
item_list.splice(item_list.begin(), item_list, it->second);
return it->second->second;
};
};
这是基本的简单LRU缓存的实现。
//LRU Cache
#include <cassert>
#include <list>
template <typename K,
typename V
>
class LRUCache
{
// Key access history, most recent at back
typedef std::list<K> List;
// Key to value and key history iterator
typedef unordered_map< K,
std::pair<
V,
typename std::list<K>::iterator
>
> Cache;
typedef V (*Fn)(const K&);
public:
LRUCache( size_t aCapacity, Fn aFn )
: mFn( aFn )
, mCapacity( aCapacity )
{}
//get value for key aKey
V operator()( const K& aKey )
{
typename Cache::iterator it = mCache.find( aKey );
if( it == mCache.end() ) //cache-miss: did not find the key
{
V v = mFn( aKey );
insert( aKey, v );
return v;
}
// cache-hit
// Update access record by moving accessed key to back of the list
mList.splice( mList.end(), mList, (it)->second.second );
// return the retrieved value
return (it)->second.first;
}
private:
// insert a new key-value pair in the cache
void insert( const K& aKey, V aValue )
{
//method should be called only when cache-miss happens
assert( mCache.find( aKey ) == mCache.end() );
// make space if necessary
if( mList.size() == mCapacity )
{
evict();
}
// record k as most-recently-used key
typename std::list<K>::iterator it = mList.insert( mList.end(), aKey );
// create key-value entry, linked to the usage record
mCache.insert( std::make_pair( aKey, std::make_pair( aValue, it ) ) );
}
//Purge the least-recently used element in the cache
void evict()
{
assert( !mList.empty() );
// identify least-recently-used key
const typename Cache::iterator it = mCache.find( mList.front() );
//erase both elements to completely purge record
mCache.erase( it );
mList.pop_front();
}
private:
List mList;
Cache mCache;
Fn mFn;
size_t mCapacity;
};
我在这里看到了一些不必要的复杂实现,因此我决定也提供我的实现。缓存只有两种方法,get和set。希望它更好地可读性和可理解性:
#include<unordered_map>
#include<list>
using namespace std;
template<typename K, typename V = K>
class LRUCache
{
private:
list<K>items;
unordered_map <K, pair<V, typename list<K>::iterator>> keyValuesMap;
int csize;
public:
LRUCache(int s) :csize(s) {
if (csize < 1)
csize = 10;
}
void set(const K key, const V value) {
auto pos = keyValuesMap.find(key);
if (pos == keyValuesMap.end()) {
items.push_front(key);
keyValuesMap[key] = { value, items.begin() };
if (keyValuesMap.size() > csize) {
keyValuesMap.erase(items.back());
items.pop_back();
}
}
else {
items.erase(pos->second.second);
items.push_front(key);
keyValuesMap[key] = { value, items.begin() };
}
}
bool get(const K key, V &value) {
auto pos = keyValuesMap.find(key);
if (pos == keyValuesMap.end())
return false;
items.erase(pos->second.second);
items.push_front(key);
keyValuesMap[key] = { pos->second.first, items.begin() };
value = pos->second.first;
return true;
}
};
两年前,我实现了线程安全的LRU缓存。
LRU通常通过HashMap和LinkedList实现。您可以通过谷歌搜索实现细节。关于它的资源很多(维基百科也有很好的解释)。
为了确保线程安全,每当修改LRU的状态时都需要置锁。
我将在这里粘贴我的C ++代码以供您参考。
这是实现。
/***
A template thread-safe LRU container.
Typically LRU cache is implemented using a doubly linked list and a hash map.
Doubly Linked List is used to store list of pages with most recently used page
at the start of the list. So, as more pages are added to the list,
least recently used pages are moved to the end of the list with page
at tail being the least recently used page in the list.
Additionally, this LRU provides time-to-live feature. Each entry has an expiration
datetime.
***/
#ifndef LRU_CACHE_H
#define LRU_CACHE_H
#include <iostream>
#include <list>
#include <boost/unordered_map.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/mutex.hpp>
template <typename KeyType, typename ValueType>
class LRUCache {
private:
typedef boost::posix_time::ptime DateTime;
// Cache-entry
struct ListItem {
ListItem(const KeyType &key,
const ValueType &value,
const DateTime &expiration_datetime)
: m_key(key), m_value(value), m_expiration_datetime(expiration_datetime){}
KeyType m_key;
ValueType m_value;
DateTime m_expiration_datetime;
};
typedef boost::shared_ptr<ListItem> ListItemPtr;
typedef std::list<ListItemPtr> LruList;
typedef typename std::list<ListItemPtr>::iterator LruListPos;
typedef boost::unordered_map<KeyType, LruListPos> LruMapper;
// A mutext to ensuare thread-safety.
boost::mutex m_cache_mutex;
// Maximum number of entries.
std::size_t m_capacity;
// Stores cache-entries from latest to oldest.
LruList m_list;
// Mapper for key to list-position.
LruMapper m_mapper;
// Default time-to-live being add to entry every time we touch it.
unsigned long m_ttl_in_seconds;
/***
Note : This is a helper function whose function call need to be wrapped
within a lock. It returns true/false whether key exists and
not expires. Delete the expired entry if necessary.
***/
bool containsKeyHelper(const KeyType &key) {
bool has_key(m_mapper.count(key) != 0);
if (has_key) {
LruListPos pos = m_mapper[key];
ListItemPtr & cur_item_ptr = *pos;
// Remove the entry if key expires
if (isDateTimeExpired(cur_item_ptr->m_expiration_datetime)) {
has_key = false;
m_list.erase(pos);
m_mapper.erase(key);
}
}
return has_key;
}
/***
Locate an item in list by key, and move it at the front of the list,
which means make it the latest item.
Note : This is a helper function whose function call need to be wrapped
within a lock.
***/
void makeEntryTheLatest(const KeyType &key) {
if (m_mapper.count(key)) {
// Add original item at the front of the list,
// and update <Key, ListPosition> mapper.
LruListPos original_list_position = m_mapper[key];
const ListItemPtr & cur_item_ptr = *original_list_position;
m_list.push_front(cur_item_ptr);
m_mapper[key] = m_list.begin();
// Don't forget to update its expiration datetime.
m_list.front()->m_expiration_datetime = getExpirationDatetime(m_list.front()->m_expiration_datetime);
// Erase the item at original position.
m_list.erase(original_list_position);
}
}
public:
/***
Cache should have capacity to limit its memory usage.
We also add time-to-live for each cache entry to expire
the stale information. By default, ttl is one hour.
***/
LRUCache(std::size_t capacity, unsigned long ttl_in_seconds = 3600)
: m_capacity(capacity), m_ttl_in_seconds(ttl_in_seconds) {}
/***
Return now + time-to-live
***/
DateTime getExpirationDatetime(const DateTime &now) {
static const boost::posix_time::seconds ttl(m_ttl_in_seconds);
return now + ttl;
}
/***
If input datetime is older than current datetime,
then it is expired.
***/
bool isDateTimeExpired(const DateTime &date_time) {
return date_time < boost::posix_time::second_clock::local_time();
}
/***
Return the number of entries in this cache.
***/
std::size_t size() {
boost::mutex::scoped_lock lock(m_cache_mutex);
return m_mapper.size();
}
/***
Get value by key.
Return true/false whether key exists.
If key exists, input paramter value will get updated.
***/
bool get(const KeyType &key, ValueType &value) {
boost::mutex::scoped_lock lock(m_cache_mutex);
if (!containsKeyHelper(key)) {
return false;
} else {
// Make the entry the latest and update its TTL.
makeEntryTheLatest(key);
// Then get its value.
value = m_list.front()->m_value;
return true;
}
}
/***
Add <key, value> pair if no such key exists.
Otherwise, just update the value of old key.
***/
void put(const KeyType &key, const ValueType &value) {
boost::mutex::scoped_lock lock(m_cache_mutex);
if (containsKeyHelper(key)) {
// Make the entry the latest and update its TTL.
makeEntryTheLatest(key);
// Now we only need to update its value.
m_list.front()->m_value = value;
} else { // Key exists and is not expired.
if (m_list.size() == m_capacity) {
KeyType delete_key = m_list.back()->m_key;
m_list.pop_back();
m_mapper.erase(delete_key);
}
DateTime now = boost::posix_time::second_clock::local_time();
m_list.push_front(boost::make_shared<ListItem>(key, value,
getExpirationDatetime(now)));
m_mapper[key] = m_list.begin();
}
}
};
#endif
这是单元测试。
#include "cxx_unit.h"
#include "lru_cache.h"
struct LruCacheTest
: public FDS::CxxUnit::TestFixture<LruCacheTest>{
CXXUNIT_TEST_SUITE();
CXXUNIT_TEST(LruCacheTest, testContainsKey);
CXXUNIT_TEST(LruCacheTest, testGet);
CXXUNIT_TEST(LruCacheTest, testPut);
CXXUNIT_TEST_SUITE_END();
void testContainsKey();
void testGet();
void testPut();
};
void LruCacheTest::testContainsKey() {
LRUCache<int,std::string> cache(3);
cache.put(1,"1"); // 1
cache.put(2,"2"); // 2,1
cache.put(3,"3"); // 3,2,1
cache.put(4,"4"); // 4,3,2
std::string value_holder("");
CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
CXXUNIT_ASSERT(value_holder == "");
CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
CXXUNIT_ASSERT(value_holder == "2");
cache.put(5,"5"); // 5, 2, 4
CXXUNIT_ASSERT(cache.get(3, value_holder) == false); // 5, 2, 4
CXXUNIT_ASSERT(value_holder == "2"); // value_holder is still "2"
CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
CXXUNIT_ASSERT(value_holder == "4");
cache.put(2,"II"); // {2, "II"}, 4, 5
CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2, 4, 5
CXXUNIT_ASSERT(value_holder == "II");
// Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
CXXUNIT_ASSERT(cache.size() == 3);
CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}
void LruCacheTest::testGet() {
LRUCache<int,std::string> cache(3);
cache.put(1,"1"); // 1
cache.put(2,"2"); // 2,1
cache.put(3,"3"); // 3,2,1
cache.put(4,"4"); // 4,3,2
std::string value_holder("");
CXXUNIT_ASSERT(cache.get(1, value_holder) == false); // 4,3,2
CXXUNIT_ASSERT(value_holder == "");
CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // 2,4,3
CXXUNIT_ASSERT(value_holder == "2");
cache.put(5,"5"); // 5,2,4
CXXUNIT_ASSERT(cache.get(5, value_holder) == true); // 5,2,4
CXXUNIT_ASSERT(value_holder == "5");
CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4, 5, 2
CXXUNIT_ASSERT(value_holder == "4");
cache.put(2,"II");
CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // {2 : "II"}, 4, 5
CXXUNIT_ASSERT(value_holder == "II");
// Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
CXXUNIT_ASSERT(cache.size() == 3);
CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}
void LruCacheTest::testPut() {
LRUCache<int,std::string> cache(3);
cache.put(1,"1"); // 1
cache.put(2,"2"); // 2,1
cache.put(3,"3"); // 3,2,1
cache.put(4,"4"); // 4,3,2
cache.put(5,"5"); // 5,4,3
std::string value_holder("");
CXXUNIT_ASSERT(cache.get(2, value_holder) == false); // 5,4,3
CXXUNIT_ASSERT(value_holder == "");
CXXUNIT_ASSERT(cache.get(4, value_holder) == true); // 4,5,3
CXXUNIT_ASSERT(value_holder == "4");
cache.put(2,"II");
CXXUNIT_ASSERT(cache.get(2, value_holder) == true); // II,4,5
CXXUNIT_ASSERT(value_holder == "II");
// Cache-entries : {2, "II"}, {4, "4"}, {5, "5"}
CXXUNIT_ASSERT(cache.size() == 3);
CXXUNIT_ASSERT(cache.get(2, value_holder) == true);
CXXUNIT_ASSERT(cache.get(4, value_holder) == true);
CXXUNIT_ASSERT(cache.get(5, value_holder) == true);
}
CXXUNIT_REGISTER_TEST(LruCacheTest);
LRU页面替换技术:
当引用页面时,所需的页面可能在缓存中。
If in the cache
:我们需要将其置于缓存队列的最前面。
If NOT in the cache
:我们将其放入缓存中。简而言之,我们将新页面添加到缓存队列的最前面。如果缓存已满,即所有帧都已满,则从缓存队列的后部删除一个页面,然后将新页面添加到缓存队列的前部。
# Cache Size
csize = int(input())
# Sequence of pages
pages = list(map(int,input().split()))
# Take a cache list
cache=[]
# Keep track of number of elements in cache
n=0
# Count Page Fault
fault=0
for page in pages:
# If page exists in cache
if page in cache:
# Move the page to front as it is most recent page
# First remove from cache and then append at front
cache.remove(page)
cache.append(page)
else:
# Cache is full
if(n==csize):
# Remove the least recent page
cache.pop(0)
else:
# Increment element count in cache
n=n+1
# Page not exist in cache => Page Fault
fault += 1
cache.append(page)
print("Page Fault:",fault)
输入输出
Input:
3
1 2 3 4 1 2 5 1 2 3 4 5
Output:
Page Fault: 10
这是我的简单Java程序员,复杂度为O(1)。
//
package com.chase.digital.mystack;
import java.util.HashMap;
import java.util.Map;
public class LRUCache {
private int size;
private Map<String, Map<String, Integer>> cache = new HashMap<>();
public LRUCache(int size) {
this.size = size;
}
public void addToCache(String key, String value) {
if (cache.size() < size) {
Map<String, Integer> valueMap = new HashMap<>();
valueMap.put(value, 0);
cache.put(key, valueMap);
} else {
findLRUAndAdd(key, value);
}
}
public String getFromCache(String key) {
String returnValue = null;
if (cache.get(key) == null) {
return null;
} else {
Map<String, Integer> value = cache.get(key);
for (String s : value.keySet()) {
value.put(s, value.get(s) + 1);
returnValue = s;
}
}
return returnValue;
}
private void findLRUAndAdd(String key, String value) {
String leastRecentUsedKey = null;
int lastUsedValue = 500000;
for (String s : cache.keySet()) {
final Map<String, Integer> stringIntegerMap = cache.get(s);
for (String s1 : stringIntegerMap.keySet()) {
final Integer integer = stringIntegerMap.get(s1);
if (integer < lastUsedValue) {
lastUsedValue = integer;
leastRecentUsedKey = s;
}
}
}
cache.remove(leastRecentUsedKey);
Map<String, Integer> valueMap = new HashMap<>();
valueMap.put(value, 0);
cache.put(key, valueMap);
}
}
在我的博客文章中有详细的解释。
class LRUCache {
constructor(capacity) {
this.head = null;
this.tail = null;
this.capacity = capacity;
this.count = 0;
this.hashMap = new Map();
}
get(key) {
var node = this.hashMap.get(key);
if(node) {
if(node == this.head) {
// node is already at the head, just return the value
return node.val;
}
if(this.tail == node && this.tail.prev) {
// if the node is at the tail,
// set tail to the previous node if it exists.
this.tail = this.tail.prev;
this.tail.next = null;
}
// link neibouring nodes together
if(node.prev)
node.prev.next = node.next;
if(node.next)
node.next.prev = node.prev;
// add the new head node
node.prev = null;
node.next = this.head;
this.head.prev = node;
this.head = node;
return node.val;
}
return -1;
}
put(key, val) {
this.count ++;
var newNode = { key, val, prev: null, next: null };
if(this.head == null) {
// this.hashMap is empty creating new node
this.head = newNode;
this.tail = newNode;
}
else {
var oldNode = this.hashMap.get(key);
if(oldNode) {
// if node with the same key exists,
// clear prev and next pointers before deleting the node.
if(oldNode.next) {
if(oldNode.prev)
oldNode.next.prev = oldNode.prev;
else
this.head = oldNode.next;
}
if(oldNode.prev) {
oldNode.prev.next = oldNode.next;
if(oldNode == this.tail)
this.tail = oldNode.prev;
}
// removing the node
this.hashMap.delete(key);
this.count --;
}
// adding the new node and set up the pointers to it's neibouring nodes
var currentHead = this.head;
currentHead.prev = newNode;
newNode.next = currentHead;
this.head = newNode;
if(this.tail == null)
this.tail = currentHead;
if(this.count == this.capacity + 1) {
// remove last nove if over capacity
var lastNode = this.tail;
this.tail = lastNode.prev;
if(!this.tail) {
//debugger;
}
this.tail.next = null;
this.hashMap.delete(lastNode.key);
this.count --;
}
}
this.hashMap.set(key, newNode);
return null;
}
}
var cache = new LRUCache(3);
cache.put(1,1); // 1
cache.put(2,2); // 2,1
cache.put(3,3); // 3,2,1
console.log( cache.get(2) ); // 2,3,1
console.log( cache.get(1) ); // 1,2,3
cache.put(4,4); // 4,1,2 evicts 3
console.log( cache.get(3) ); // 3 is no longer in cache
LRU缓存的工作
首先丢弃最近最少使用的物品。如果要确保算法始终丢弃最近最少使用的商品,则此算法需要跟踪何时使用了昂贵的商品。该技术的一般实现方式需要为缓存行保留“年龄位”,并根据年龄位跟踪“最近最少使用”的缓存行。在这样的实现中,每次使用高速缓存行时,所有其他高速缓存行的寿命都会改变。
以下示例的访问顺序为ABCDECDB。
类节点:def init(自我,k,v):self.key = k self.value = v self.next =无self.prev =无class LRU_cache:def init(self,capacity):self.capacity =容量self.dic = dict()self.head = Node(0,0)self.tail = Node(0,0)self.head.next = self.tail self.tail .prev = self.head def _add(self,node):p = self.tail.prev p.next =节点self.tail.prev =节点node.next = self.tail node.prev = p def _remove(self, node):p = node.prev n = node.next p.next = n n.prev = p def get(self,key):如果在self.dic中键入:n = self.dic [key] self._remove( n)self._add(n)返回n.value返回-1 def set(self,key,value):n = Node(key,value)self._add(n)self.dic [key] = n如果len( self.dic)> self.capacity:n = self.head.next self。_remove(n)del self.dic [n.key]缓存= LRU_cache(3)cache.set('a','apple')cache.set('b','ball')cache.set('c' ,'cat')cache.set('d','dog')print(cache.get('a'))print(cache.get('c'))