要选择该ith
行,请使用iloc
:
In [31]: df_test.iloc[0]
Out[31]:
ATime 1.2
X 2.0
Y 15.0
Z 2.0
Btime 1.2
C 12.0
D 25.0
E 12.0
Name: 0, dtype: float64
要在Btime
列中选择第i个值,可以使用:
In [30]: df_test['Btime'].iloc[0]
Out[30]: 1.2
df_test['Btime'].iloc[0]
(推荐)和之间有区别df_test.iloc[0]['Btime']
:
DataFrames将数据存储在基于列的块中(每个块具有一个dtype)。如果先按列选择,则可以返回视图(比返回副本要快),并且保留原始dtype。相反,如果首先选择按行,并且DataFrame的列具有不同的dtype,则Pandas 将数据复制到新的Object dtype 系列中。因此,选择列比选择行要快一些。因此,虽然
df_test.iloc[0]['Btime']
作品,df_test['Btime'].iloc[0]
是多一点点效率。
在分配方面,两者之间存在很大差异。
df_test['Btime'].iloc[0] = x
影响df_test
,但df_test.iloc[0]['Btime']
可能不会。有关原因的说明,请参见下文。由于索引顺序的细微差别会在行为上产生很大差异,因此最好使用单个索引分配:
df.iloc[0, df.columns.get_loc('Btime')] = x
df.iloc[0, df.columns.get_loc('Btime')] = x
(推荐的):
为DataFrame分配新值的推荐方法是避免链接索引,而应使用andrew所示的方法,
df.loc[df.index[n], 'Btime'] = x
要么
df.iloc[n, df.columns.get_loc('Btime')] = x
后一种方法要快一些,因为df.loc
必须将行和列标签转换为位置索引,因此,如果使用df.iloc
替代方法,则转换的必要性要少一些
。
df['Btime'].iloc[0] = x
可行,但不建议:
尽管这可行,但是它利用了当前实现DataFrames的方式。不能保证熊猫将来会以这种方式工作。特别是,它利用了以下事实:(当前)df['Btime']
始终返回视图(而不是副本),因此df['Btime'].iloc[n] = x
可用于在的列的第n个位置分配新值。Btime
df
由于Pandas无法明确保证索引器何时返回视图还是副本,因此使用链式索引的赋值通常会引发,SettingWithCopyWarning
即使在这种情况下,赋值可以成功修改df
:
In [22]: df = pd.DataFrame({'foo':list('ABC')}, index=[0,2,1])
In [24]: df['bar'] = 100
In [25]: df['bar'].iloc[0] = 99
/home/unutbu/data/binky/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
self._setitem_with_indexer(indexer, value)
In [26]: df
Out[26]:
foo bar
0 A 99 <-- assignment succeeded
2 B 100
1 C 100
df.iloc[0]['Btime'] = x
不起作用:
相比之下,with的分配df.iloc[0]['bar'] = 123
不起作用,因为df.iloc[0]
正在返回副本:
In [66]: df.iloc[0]['bar'] = 123
/home/unutbu/data/binky/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
In [67]: df
Out[67]:
foo bar
0 A 99 <-- assignment failed
2 B 100
1 C 100
警告:我之前曾建议过df_test.ix[i, 'Btime']
。但这不能保证为您提供ith
值,因为在尝试按位置索引之前先尝试ix
按标签索引。因此,如果DataFrame的整数索引不是从0开始的排序顺序,则using 将返回标有标签的行,而不是该行。例如,ix[i]
i
ith
In [1]: df = pd.DataFrame({'foo':list('ABC')}, index=[0,2,1])
In [2]: df
Out[2]:
foo
0 A
2 B
1 C
In [4]: df.ix[1, 'foo']
Out[4]: 'C'
df_test.head(1)
工作,可以使用更通用的形式,iloc
由unutbu回答