Answers:
int sum(int a, int b);
int subtract(int a, int b);
int mul(int a, int b);
int div(int a, int b);
int (*p[4]) (int x, int y);
int main(void)
{
  int result;
  int i, j, op;
  p[0] = sum; /* address of sum() */
  p[1] = subtract; /* address of subtract() */
  p[2] = mul; /* address of mul() */
  p[3] = div; /* address of div() */
[...]调用这些函数指针之一:
result = (*p[op]) (i, j); // op being the index of one of the four functions(*p[4]) (int, int) {sum,substract,mul,div}
                    上面的答案可能会对您有所帮助,但您可能还想知道如何使用函数指针数组。
void fun1()
{
}
void fun2()
{
}
void fun3()
{
}
void (*func_ptr[3])() = {fun1, fun2, fun3};
main()
{
    int option;
    printf("\nEnter function number you want");
    printf("\nYou should not enter other than 0 , 1, 2"); /* because we have only 3 functions */
    scanf("%d",&option);
    if((option>=0)&&(option<=2))
    { 
        (*func_ptr[option])();
    }
    return 0;
}您只能将具有相同返回类型和相同参数类型且没有参数的函数的地址分配给单个函数指针数组。
如果上述所有函数都具有相同类型的相同数量的参数,则也可以像下面那样传递参数。
  (*func_ptr[option])(argu1);注意:此处数组中的功能指针编号将从0开始,与常规数组中的编号相同。因此在上面的示例fun1中,如果option = 0 fun2可以调用,如果option = 1 fun3可以调用,如果option = 2可以调用。
(*func_ptr[3])即可(*func_ptr[3])(),它将进行编译
                    使用方法如下:
#ifndef NEW_FUN_H_
#define NEW_FUN_H_
#include <stdio.h>
typedef int speed;
speed fun(int x);
enum fp {
    f1, f2, f3, f4, f5
};
void F1();
void F2();
void F3();
void F4();
void F5();
#endif#include "New_Fun.h"
speed fun(int x)
{
    int Vel;
    Vel = x;
    return Vel;
}
void F1()
{
    printf("From F1\n");
}
void F2()
{
    printf("From F2\n");
}
void F3()
{
    printf("From F3\n");
}
void F4()
{
    printf("From F4\n");
}
void F5()
{
    printf("From F5\n");
}#include <stdio.h>
#include "New_Fun.h"
int main()
{
    int (*F_P)(int y);
    void (*F_A[5])() = { F1, F2, F3, F4, F5 };    // if it is int the pointer incompatible is bound to happen
    int xyz, i;
    printf("Hello Function Pointer!\n");
    F_P = fun;
    xyz = F_P(5);
    printf("The Value is %d\n", xyz);
    //(*F_A[5]) = { F1, F2, F3, F4, F5 };
    for (i = 0; i < 5; i++)
    {
        F_A[i]();
    }
    printf("\n\n");
    F_A[f1]();
    F_A[f2]();
    F_A[f3]();
    F_A[f4]();
    return 0;
}我希望这有助于理解 Function Pointer.
f1, f2 ...并代替然后输入'writefile,readfromfile ...'...它变得更可重用
                    此“答案”更多是VonC答案的附录。只是注意到可以通过typedef简化语法,并且可以使用聚合初始化:
typedef int FUNC(int, int);
FUNC sum, subtract, mul, div;
FUNC *p[4] = { sum, subtract, mul, div };
int main(void)
{
    int result;
    int i = 2, j = 3, op = 2;  // 2: mul
    result = p[op](i, j);   // = 6
}
// maybe even in another file
int sum(int a, int b) { return a+b; }
int subtract(int a, int b) { return a-b; }
int mul(int a, int b) { return a*b; }
int div(int a, int b) { return a/b; }哦,有很多例子。只需查看glib或gtk中的任何内容即可。您可以一路看到函数指针的工作。
这里例如是gtk_button东西的初始化。
static void
gtk_button_class_init (GtkButtonClass *klass)
{
  GObjectClass *gobject_class;
  GtkObjectClass *object_class;
  GtkWidgetClass *widget_class;
  GtkContainerClass *container_class;
  gobject_class = G_OBJECT_CLASS (klass);
  object_class = (GtkObjectClass*) klass;
  widget_class = (GtkWidgetClass*) klass;
  container_class = (GtkContainerClass*) klass;
  gobject_class->constructor = gtk_button_constructor;
  gobject_class->set_property = gtk_button_set_property;
  gobject_class->get_property = gtk_button_get_property;
在gtkobject.h中,您可以找到以下声明:
struct _GtkObjectClass
{
  GInitiallyUnownedClass parent_class;
  /* Non overridable class methods to set and get per class arguments */
  void (*set_arg) (GtkObject *object,
           GtkArg    *arg,
           guint      arg_id);
  void (*get_arg) (GtkObject *object,
           GtkArg    *arg,
           guint      arg_id);
  /* Default signal handler for the ::destroy signal, which is
   *  invoked to request that references to the widget be dropped.
   *  If an object class overrides destroy() in order to perform class
   *  specific destruction then it must still invoke its superclass'
   *  implementation of the method after it is finished with its
   *  own cleanup. (See gtk_widget_real_destroy() for an example of
   *  how to do this).
   */
  void (*destroy)  (GtkObject *object);
};(* set_arg)东西是指向函数的指针,可以例如在某些派生类中为其分配另一个实现。
通常你会看到这样的东西
struct function_table {
   char *name;
   void (*some_fun)(int arg1, double arg2);
};
void function1(int  arg1, double arg2)....
struct function_table my_table [] = {
    {"function1", function1},
...因此,您可以按名称进入表格并调用“关联”功能。
或者,也许您使用一个散列表,在其中放置函数并称其为“按名称”。
问候
 
弗里德里希
可以这样使用它:
//! Define:
#define F_NUM 3
int (*pFunctions[F_NUM])(void * arg);
//! Initialise:
int someFunction(void * arg) {
    int a= *((int*)arg);
    return a*a;
}
pFunctions[0]= someFunction;
//! Use:
int someMethod(int idx, void * arg, int * result) {
    int done= 0;
    if (idx < F_NUM && pFunctions[idx] != NULL) {
        *result= pFunctions[idx](arg);
        done= 1;
    }
    return done;
}
int x= 2;
int z= 0;
someMethod(0, (void*)&x, &z);
assert(z == 4);这应该是上述响应的简短示例。希望这会有所帮助。
#include <iostream>
using namespace std;
#define DBG_PRINT(x) do { std::printf("Line:%-4d" "  %15s = %-10d\n", __LINE__, #x, x); } while(0);
void F0(){ printf("Print F%d\n", 0); }
void F1(){ printf("Print F%d\n", 1); }
void F2(){ printf("Print F%d\n", 2); }
void F3(){ printf("Print F%d\n", 3); }
void F4(){ printf("Print F%d\n", 4); }
void (*fArrVoid[N_FUNC])() = {F0, F1, F2, F3, F4};
int Sum(int a, int b){ return(a+b); }
int Sub(int a, int b){ return(a-b); }
int Mul(int a, int b){ return(a*b); }
int Div(int a, int b){ return(a/b); }
int (*fArrArgs[4])(int a, int b) = {Sum, Sub, Mul, Div};
int main(){
    for(int i = 0; i < 5; i++)  (*fArrVoid[i])();
    printf("\n");
    DBG_PRINT((*fArrArgs[0])(3,2))
    DBG_PRINT((*fArrArgs[1])(3,2))
    DBG_PRINT((*fArrArgs[2])(3,2))
    DBG_PRINT((*fArrArgs[3])(3,2))
    return(0);
}已经通过很好的例子回答了这个问题。唯一可能缺少的示例是函数返回指针的示例。我为此写了另一个示例,并添加了很多评论,以防有人觉得有用:
#include <stdio.h>
char * func1(char *a) {
    *a = 'b';
    return a;
}
char * func2(char *a) {
    *a = 'c';
    return a;
}
int main() {
    char a = 'a';
    /* declare array of function pointers
     * the function pointer types are char * name(char *)
     * A pointer to this type of function would be just
     * put * before name, and parenthesis around *name:
     *   char * (*name)(char *)
     * An array of these pointers is the same with [x]
     */
    char * (*functions[2])(char *) = {func1, func2};
    printf("%c, ", a);
    /* the functions return a pointer, so I need to deference pointer
     * Thats why the * in front of the parenthesis (in case it confused you)
     */
    printf("%c, ", *(*functions[0])(&a)); 
    printf("%c\n", *(*functions[1])(&a));
    a = 'a';
    /* creating 'name' for a function pointer type
     * funcp is equivalent to type char *(*funcname)(char *)
     */
    typedef char *(*funcp)(char *);
    /* Now the declaration of the array of function pointers
     * becomes easier
     */
    funcp functions2[2] = {func1, func2};
    printf("%c, ", a);
    printf("%c, ", *(*functions2[0])(&a));
    printf("%c\n", *(*functions2[1])(&a));
    return 0;
}这个带有函数指针的多维数组的简单示例”:
void one( int a, int b){    printf(" \n[ ONE ]  a =  %d   b = %d",a,b);}
void two( int a, int b){    printf(" \n[ TWO ]  a =  %d   b = %d",a,b);}
void three( int a, int b){    printf("\n [ THREE ]  a =  %d   b = %d",a,b);}
void four( int a, int b){    printf(" \n[ FOUR ]  a =  %d   b = %d",a,b);}
void five( int a, int b){    printf(" \n [ FIVE ]  a =  %d   b = %d",a,b);}
void(*p[2][2])(int,int)   ;
int main()
{
    int i,j;
    printf("multidimensional array with function pointers\n");
    p[0][0] = one;    p[0][1] = two;    p[1][0] = three;    p[1][1] = four;
    for (  i  = 1 ; i >=0; i--)
        for (  j  = 0 ; j <2; j++)
            (*p[i][j])( (i, i*j);
    return 0;
}