假设您要递归实现二叉树的广度优先搜索。你会怎么做?
是否可以仅将调用堆栈用作辅助存储?
假设您要递归实现二叉树的广度优先搜索。你会怎么做?
是否可以仅将调用堆栈用作辅助存储?
Answers:
(我假设这只是一种思想练习,甚至是一个技巧性的作业/面试问题,但是我想我可以想象一个奇怪的场景,由于某种原因,您不允许任何堆空间使用[一些非常糟糕的习惯内存管理器?一些奇怪的运行时/操作系统问题?],而您仍然可以访问堆栈...)
广度优先遍历通常使用队列,而不是堆栈。队列和堆栈的性质几乎是相反的,因此,除非您这样做,否则尝试将调用堆栈(即堆栈,因此称为名称)用作辅助存储(队列)注定会失败。对于您不应该使用的调用堆栈而言,这太愚蠢了。
同样,您尝试实现的任何非尾递归本质上实际上是在算法中添加了堆栈。这使得它不再在二叉树上进行广度优先搜索,因此传统BFS的运行时和其他条件不再完全适用。当然,您始终可以将任何循环简单地转换为递归调用,但这不是任何有意义的递归。
但是,正如其他人所证明的,有一些方法可以以某种代价实现遵循BFS语义的方法。如果比较的成本很高,而节点遍历的成本很低,那么就像@Simon Buchan一样,您可以简单地运行深度优先的迭代搜索,仅处理叶子。这意味着堆中没有存储增长的队列,只有局部深度变量,并且在遍历树的过程中一遍又一遍地在调用堆栈上建立堆栈。正如@Patrick所指出的,无论如何,数组支持的二叉树通常都以广度优先遍历的顺序存储,因此,在不需要辅助队列的情况下,以广度优先的搜索将是微不足道的。
如果使用数组支持二叉树,则可以代数确定下一个节点。如果i
是节点,则可以在2i + 1
(对于左侧节点)和2i + 2
(对于右侧节点)找到其子节点。节点的下一个邻居由给出i + 1
,除非i
是的幂2
这是在数组支持的二进制搜索树上进行广度优先搜索的非常幼稚的实现的伪代码。这假定了一个固定大小的数组,因此也假设了一个固定的深度树。它将查看无父节点,并可能创建难以管理的大堆栈。
bintree-bfs(bintree, elt, i)
if (i == LENGTH)
return false
else if (bintree[i] == elt)
return true
else
return bintree-bfs(bintree, elt, i+1)
我找不到完全递归的方法(没有任何辅助数据结构)。但是,如果队列Q通过引用传递,那么您可以具有以下傻尾递归函数:
BFS(Q)
{
if (|Q| > 0)
v <- Dequeue(Q)
Traverse(v)
foreach w in children(v)
Enqueue(Q, w)
BFS(Q)
}
以下方法使用DFS算法获取特定深度的所有节点-与对该级别进行BFS相同。如果您找出树的深度并对所有级别执行此操作,则结果将与BFS相同。
public void PrintLevelNodes(Tree root, int level) {
if (root != null) {
if (level == 0) {
Console.Write(root.Data);
return;
}
PrintLevelNodes(root.Left, level - 1);
PrintLevelNodes(root.Right, level - 1);
}
}
for (int i = 0; i < depth; i++) {
PrintLevelNodes(root, i);
}
找到一棵树的深度是小菜一碟:
public int MaxDepth(Tree root) {
if (root == null) {
return 0;
} else {
return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
}
}
level
为零才返回。
Java中的简单BFS和DFS递归:
只需在堆栈/队列中推入/提供树的根节点,然后调用这些函数。
public static void breadthFirstSearch(Queue queue) {
if (queue.isEmpty())
return;
Node node = (Node) queue.poll();
System.out.println(node + " ");
if (node.right != null)
queue.offer(node.right);
if (node.left != null)
queue.offer(node.left);
breadthFirstSearch(queue);
}
public static void depthFirstSearch(Stack stack) {
if (stack.isEmpty())
return;
Node node = (Node) stack.pop();
System.out.println(node + " ");
if (node.right != null)
stack.push(node.right);
if (node.left != null)
stack.push(node.left);
depthFirstSearch(stack);
}
我发现了一个非常漂亮的递归(甚至是功能性)的广度优先遍历相关算法。不是我的想法,但是我认为应该在本主题中提及它。
Chris Okasaki 仅用3张图片就非常清楚地解释了ICFP 2000的广度优先编号算法,网址为http://okasaki.blogspot.de/2008/07/breadth-first-numbering-algorithm-in.html。
我在http://debasishg.blogspot.de/2008/09/breadth-first-numbering-okasakis.html上找到的Debasish Ghosh的Scala实现是:
trait Tree[+T]
case class Node[+T](data: T, left: Tree[T], right: Tree[T]) extends Tree[T]
case object E extends Tree[Nothing]
def bfsNumForest[T](i: Int, trees: Queue[Tree[T]]): Queue[Tree[Int]] = {
if (trees.isEmpty) Queue.Empty
else {
trees.dequeue match {
case (E, ts) =>
bfsNumForest(i, ts).enqueue[Tree[Int]](E)
case (Node(d, l, r), ts) =>
val q = ts.enqueue(l, r)
val qq = bfsNumForest(i+1, q)
val (bb, qqq) = qq.dequeue
val (aa, tss) = qqq.dequeue
tss.enqueue[org.dg.collection.BFSNumber.Tree[Int]](Node(i, aa, bb))
}
}
}
def bfsNumTree[T](t: Tree[T]): Tree[Int] = {
val q = Queue.Empty.enqueue[Tree[T]](t)
val qq = bfsNumForest(1, q)
qq.dequeue._1
}
愚蠢的方式:
template<typename T>
struct Node { Node* left; Node* right; T value; };
template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
if (!node) return false;
if (!depth) {
if (pred(node->value)) {
*result = node;
}
return true;
}
--depth;
searchNodeDepth(node->left, result, depth, pred);
if (!*result)
searchNodeDepth(node->right, result, depth, pred);
return true;
}
template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
Node<T>* result = NULL;
int depth = 0;
while (searchNodeDepth(node, &result, depth, pred) && !result)
++depth;
return result;
}
int main()
{
// a c f
// b e
// d
Node<char*>
a = { NULL, NULL, "A" },
c = { NULL, NULL, "C" },
b = { &a, &c, "B" },
f = { NULL, NULL, "F" },
e = { NULL, &f, "E" },
d = { &b, &e, "D" };
Node<char*>* found = searchNode(&d, [](char* value) -> bool {
printf("%s\n", value);
return !strcmp((char*)value, "F");
});
printf("found: %s\n", found->value);
return 0;
}
这是简短的Scala解决方案:
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
使用返回值作为累加器的想法非常适合。可以类似的方式用其他语言实现,只需确保您的递归函数处理节点列表即可。
测试代码清单(使用@marco测试树):
import org.scalatest.FlatSpec
import scala.collection.mutable
class Node(val value: Int) {
private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty
def add(child: Node): Unit = _children += child
def children = _children.toList
override def toString: String = s"$value"
}
class BfsTestScala extends FlatSpec {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
def tree(): Node = {
val root = new Node(1)
root.add(new Node(2))
root.add(new Node(3))
root.add(new Node(4))
root.children(0).add(new Node(5))
root.children(0).add(new Node(6))
root.children(2).add(new Node(7))
root.children(2).add(new Node(8))
root.children(0).children(0).add(new Node(9))
root.children(0).children(0).add(new Node(10))
root.children(2).children(0).add(new Node(11))
root.children(2).children(0).add(new Node(12))
root
}
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
"BFS" should "work" in {
println(bfs(List(tree())))
}
}
输出:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
这是一个python实现:
graph = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
def bfs(paths, goal):
if not paths:
raise StopIteration
new_paths = []
for path in paths:
if path[-1] == goal:
yield path
last = path[-1]
for neighbor in graph[last]:
if neighbor not in path:
new_paths.append(path + [neighbor])
yield from bfs(new_paths, goal)
for path in bfs([['A']], 'D'):
print(path)
这是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化功能,但是TCOd版本非常相似。另请参阅@snv的帖子。
import scala.collection.immutable.Queue
object RecursiveBfs {
def bfs[A](tree: Tree[A], target: A): Boolean = {
bfs(Queue(tree), target)
}
private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
forest.dequeueOption exists {
case (E, tail) => bfs(tail, target)
case (Node(value, _, _), _) if value == target => true
case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
}
}
sealed trait Tree[+A]
case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object E extends Tree[Nothing]
}
使用Haskell,以下内容对我来说似乎很自然。在树的各个层次上递归地进行迭代(在这里,我将名称收集到一个大的有序字符串中,以显示通过树的路径):
data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
where levelRecurser level = if length level == 0
then ""
else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])
这是BFS递归遍历Python实现,适用于无循环的图。
def bfs_recursive(level):
'''
@params level: List<Node> containing the node for a specific level.
'''
next_level = []
for node in level:
print(node.value)
for child_node in node.adjency_list:
next_level.append(child_node)
if len(next_level) != 0:
bfs_recursive(next_level)
class Node:
def __init__(self, value):
self.value = value
self.adjency_list = []
我想将美分添加到最上面的答案中,如果该语言支持诸如generator之类的东西,则bfs可以以递归方式完成。
首先,@ Tanzelax的答案是:
广度优先遍历通常使用队列,而不是堆栈。队列和堆栈的性质几乎相反,因此尝试将调用堆栈(即堆栈,因此称为名称)用作辅助存储(队列)注定会失败。
确实,普通函数调用的堆栈不会像普通堆栈那样运行。但是生成器函数将暂停函数的执行,因此它使我们有机会产生下一级节点的子级,而无需深入研究该节点的更深后代。
以下代码是Python中的递归 bfs。
def bfs(root):
yield root
for n in bfs(root):
for c in n.children:
yield c
直觉是:
我必须实现以BFS顺序输出的堆遍历。它实际上不是BFS,但是可以完成相同的任务。
private void getNodeValue(Node node, int index, int[] array) {
array[index] = node.value;
index = (index*2)+1;
Node left = node.leftNode;
if (left!=null) getNodeValue(left,index,array);
Node right = node.rightNode;
if (right!=null) getNodeValue(right,index+1,array);
}
public int[] getHeap() {
int[] nodes = new int[size];
getNodeValue(root,0,nodes);
return nodes;
}
设v为起始顶点
令G为有问题的图
以下是不使用队列的伪代码
Initially label v as visited as you start from v
BFS(G,v)
for all adjacent vertices w of v in G:
if vertex w is not visited:
label w as visited
for all adjacent vertices w of v in G:
recursively call BFS(G,w)
二进制(或n进制)树的BFS可以递归地完成而无需排队,如下所示(在Java中):
public class BreathFirst {
static class Node {
Node(int value) {
this(value, 0);
}
Node(int value, int nChildren) {
this.value = value;
this.children = new Node[nChildren];
}
int value;
Node[] children;
}
static void breathFirst(Node root, Consumer<? super Node> printer) {
boolean keepGoing = true;
for (int level = 0; keepGoing; level++) {
keepGoing = breathFirst(root, printer, level);
}
}
static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
if (depth < 0 || node == null) return false;
if (depth == 0) {
printer.accept(node);
return true;
}
boolean any = false;
for (final Node child : node.children) {
any |= breathFirst(child, printer, depth - 1);
}
return any;
}
}
遍历打印数字以升序排列的示例1-12:
public static void main(String... args) {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
Node root = new Node(1, 3);
root.children[0] = new Node(2, 2);
root.children[1] = new Node(3);
root.children[2] = new Node(4, 2);
root.children[0].children[0] = new Node(5, 2);
root.children[0].children[1] = new Node(6);
root.children[2].children[0] = new Node(7, 2);
root.children[2].children[1] = new Node(8);
root.children[0].children[0].children[0] = new Node(9);
root.children[0].children[0].children[1] = new Node(10);
root.children[2].children[0].children[0] = new Node(11);
root.children[2].children[0].children[1] = new Node(12);
breathFirst(root, n -> System.out.println(n.value));
}
#include <bits/stdc++.h>
using namespace std;
#define Max 1000
vector <int> adj[Max];
bool visited[Max];
void bfs_recursion_utils(queue<int>& Q) {
while(!Q.empty()) {
int u = Q.front();
visited[u] = true;
cout << u << endl;
Q.pop();
for(int i = 0; i < (int)adj[u].size(); ++i) {
int v = adj[u][i];
if(!visited[v])
Q.push(v), visited[v] = true;
}
bfs_recursion_utils(Q);
}
}
void bfs_recursion(int source, queue <int>& Q) {
memset(visited, false, sizeof visited);
Q.push(source);
bfs_recursion_utils(Q);
}
int main(void) {
queue <int> Q;
adj[1].push_back(2);
adj[1].push_back(3);
adj[1].push_back(4);
adj[2].push_back(5);
adj[2].push_back(6);
adj[3].push_back(7);
bfs_recursion(1, Q);
return 0;
}
这是一个使用深度优先递归伪造广度优先遍历的JavaScript实现。我将节点值存储在哈希内部的数组中每个深度处。如果已经存在一个级别(发生冲突),那么我们只需将该级别的数组推入即可。您也可以使用数组而不是JavaScript对象,因为我们的级别是数字的并且可以用作数组索引。您可以返回节点,值,转换为链接列表或任何您想要的东西。为了简单起见,我只是返回值。
BinarySearchTree.prototype.breadthFirstRec = function() {
var levels = {};
var traverse = function(current, depth) {
if (!current) return null;
if (!levels[depth]) levels[depth] = [current.value];
else levels[depth].push(current.value);
traverse(current.left, depth + 1);
traverse(current.right, depth + 1);
};
traverse(this.root, 0);
return levels;
};
var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:
{ '0': [ 20 ],
'1': [ 8, 22 ],
'2': [ 4, 12, 24 ],
'3': [ 10, 14 ] } */
这是使用迭代方法的实际广度优先遍历的示例。
BinarySearchTree.prototype.breadthFirst = function() {
var result = '',
queue = [],
current = this.root;
if (!current) return null;
queue.push(current);
while (current = queue.shift()) {
result += current.value + ' ';
current.left && queue.push(current.left);
current.right && queue.push(current.right);
}
return result;
};
console.log('Breadth First: ', bst.breadthFirst());
//Breadth First: 20 8 22 4 12 24 10 14
以下是我的代码,用于在不使用循环和队列的情况下完全递归实现双向图的广度优先搜索。
public class Graph
{
public int V;
public LinkedList<Integer> adj[];
Graph(int v)
{
V = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList<>();
}
void addEdge(int v,int w)
{
adj[v].add(w);
adj[w].add(v);
}
public LinkedList<Integer> getAdjVerted(int vertex)
{
return adj[vertex];
}
public String toString()
{
String s = "";
for (int i=0;i<adj.length;i++)
{
s = s +"\n"+i +"-->"+ adj[i] ;
}
return s;
}
}
//BFS IMPLEMENTATION
public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[])
{
if (!visited[vertex])
{
System.out.print(vertex +" ");
visited[vertex] = true;
}
if(!isAdjPrinted[vertex])
{
isAdjPrinted[vertex] = true;
List<Integer> adjList = graph.getAdjVerted(vertex);
printAdjecent(graph, adjList, visited, 0,isAdjPrinted);
}
}
public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[])
{
if (i < vertexList.size())
{
recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted);
recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted);
}
}
public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[])
{
if (i < list.size())
{
if (!visited[list.get(i)])
{
System.out.print(list.get(i)+" ");
visited[list.get(i)] = true;
}
printAdjecent(graph, list, visited, i+1, isAdjPrinted);
}
else
{
recursiveBFS(graph, list, visited, 0, isAdjPrinted);
}
}
二进制树的递归广度优先搜索算法的C#实现。
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0]);
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}
如果您希望算法不仅适用于二叉树,而且适用于图,那么可以有两个或更多节点指向相同的另一个节点,则必须通过保存已访问的节点列表来避免自循环。实现可能看起来像这样。
IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
{"A", new [] {"B", "C"}},
{"B", new [] {"D", "E"}},
{"C", new [] {"F", "G", "E"}},
{"E", new [] {"H"}}
};
void Main()
{
var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
Console.WriteLine(pathFound); // [A, B, E, H]
var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
Console.WriteLine(pathNotFound); // []
}
IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
if (start == end)
{
return path.Concat(new[] { end });
}
if (!graph.ContainsKey(start)) { return new string[0]; }
return graph[start].Aggregate(new string[0], (acc, letter) =>
{
if (visited.Contains(letter))
{
return acc;
}
visited.Add(letter);
var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
return acc.Concat(result).ToArray();
});
}
我已经使用c ++编写了一个程序,该程序也可以在连接图和不连接图中工作。
#include <queue>
#include "iostream"
#include "vector"
#include "queue"
using namespace std;
struct Edge {
int source,destination;
};
class Graph{
int V;
vector<vector<int>> adjList;
public:
Graph(vector<Edge> edges,int V){
this->V = V;
adjList.resize(V);
for(auto i : edges){
adjList[i.source].push_back(i.destination);
// adjList[i.destination].push_back(i.source);
}
}
void BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q);
void BFSRecursivelyJointandDisjointGraph(int s);
void printGraph();
};
void Graph :: printGraph()
{
for (int i = 0; i < this->adjList.size(); i++)
{
cout << i << " -- ";
for (int v : this->adjList[i])
cout <<"->"<< v << " ";
cout << endl;
}
}
void Graph ::BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q) {
if (q.empty())
return;
int v = q.front();
q.pop();
cout << v <<" ";
for (int u : this->adjList[v])
{
if (!discovered[u])
{
discovered[u] = true;
q.push(u);
}
}
BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);
}
void Graph ::BFSRecursivelyJointandDisjointGraph(int s) {
vector<bool> discovered(V, false);
queue<int> q;
for (int i = s; i < V; i++) {
if (discovered[i] == false)
{
discovered[i] = true;
q.push(i);
BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);
}
}
}
int main()
{
vector<Edge> edges =
{
{0, 1}, {0, 2}, {1, 2}, {2, 0}, {2,3},{3,3}
};
int V = 4;
Graph graph(edges, V);
// graph.printGraph();
graph.BFSRecursivelyJointandDisjointGraph(2);
cout << "\n";
edges = {
{0,4},{1,2},{1,3},{1,4},{2,3},{3,4}
};
Graph graph2(edges,5);
graph2.BFSRecursivelyJointandDisjointGraph(0);
return 0;
}