Answers:
import numpy as np
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
array = np.random.random(10)
print(array)
# [ 0.21069679 0.61290182 0.63425412 0.84635244 0.91599191 0.00213826
# 0.17104965 0.56874386 0.57319379 0.28719469]
value = 0.5
print(find_nearest(array, value))
# 0.568743859261
FutureWarning: 'argmin' is deprecated. Use 'idxmin' instead. The behavior of 'argmin' will be corrected to return the positional minimum in the future. Use 'series.values.argmin' to get the position of the minimum now.在上述解决方案中,使用idxmin代替argmin对我有用。(v3.6.4)
如果您的数组已排序并且非常大,则这是一个更快的解决方案:
def find_nearest(array,value):
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
return array[idx-1]
else:
return array[idx]
这可以扩展到非常大的阵列。如果您不能假定数组已经排序,则可以轻松修改上面的内容以对方法进行排序。对于小型阵列而言,这是过大的杀伤力,但是一旦阵列变大,速度就会更快。
np.searchsorted对于我的测试仪来说大约需要2 µs,整个功能大约需要10 µs。使用np.abs它变得更糟。不知道python在做什么。
math,请参见此答案。
if/else需要替换为idx = idx - (np.abs(value - array[idx-1]) < np.abs(value - array[idx])); return array[idx]
value大于array的最大元素则不起作用。我更改了if声明以if idx == len(array) or math.fabs(value - array[idx - 1]) < math.fabs(value - array[idx])使其适合我!
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
稍作修改,上面的答案就可以用于任意维数(1d,2d,3d等)的数组:
def find_nearest(a, a0):
"Element in nd array `a` closest to the scalar value `a0`"
idx = np.abs(a - a0).argmin()
return a.flat[idx]
或者,写成一行:
a.flat[np.abs(a - a0).argmin()]
a[np.abs(a-a0).argmin)]工作良好。
a[np.sum(np.square(np.abs(a-a0)),1).argmin()]。
答案摘要:如果已排序,array则二等分代码(如下所示)执行最快。大型阵列的速度要快〜100-1000倍,小型阵列的速度要快〜2-100倍。它也不需要numpy。如果您有一个未排序的,array则如果array为大,则应首先考虑使用O(n logn)排序,然后再按等分;如果array为小,则方法2似乎是最快的。
首先,您应该弄清最近值的含义。通常人们想要一个横坐标的间隔,例如array = [0,0.7,2.1],value = 1.95,答案将是idx = 1。我怀疑您是这种情况(否则,一旦找到间隔,可以使用后续条件语句很容易地修改以下内容)。我将注意到,执行此操作的最佳方法是使用二分法(我将首先提供它-请注意,它根本不需要numpy,并且比使用numpy函数要快,因为它们执行冗余操作)。然后,我将与其他用户在此处介绍的其他项目进行时间比较。
二等分:
def bisection(array,value):
'''Given an ``array`` , and given a ``value`` , returns an index j such that ``value`` is between array[j]
and array[j+1]. ``array`` must be monotonic increasing. j=-1 or j=len(array) is returned
to indicate that ``value`` is out of range below and above respectively.'''
n = len(array)
if (value < array[0]):
return -1
elif (value > array[n-1]):
return n
jl = 0# Initialize lower
ju = n-1# and upper limits.
while (ju-jl > 1):# If we are not yet done,
jm=(ju+jl) >> 1# compute a midpoint with a bitshift
if (value >= array[jm]):
jl=jm# and replace either the lower limit
else:
ju=jm# or the upper limit, as appropriate.
# Repeat until the test condition is satisfied.
if (value == array[0]):# edge cases at bottom
return 0
elif (value == array[n-1]):# and top
return n-1
else:
return jl
现在,我将从其他答案中定义代码,它们每个都返回一个索引:
import math
import numpy as np
def find_nearest1(array,value):
idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value))
return idx
def find_nearest2(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return indices
def find_nearest3(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.int64(np.subtract.outer(array, values))).argmin(0)
out = array[indices]
return indices
def find_nearest4(array,value):
idx = (np.abs(array-value)).argmin()
return idx
def find_nearest5(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
def find_nearest6(array,value):
xi = np.argmin(np.abs(np.ceil(array[None].T - value)),axis=0)
return xi
现在,我将对代码进行计时: 注意方法1,2,4,5没有正确给出间隔。方法1,2,4舍入到数组中的最近点(例如> = 1.5-> 2),方法5始终舍入(例如1.45-> 2)。只有方法3和6,当然还有二等分,才能正确给出间隔。
array = np.arange(100000)
val = array[50000]+0.55
print( bisection(array,val))
%timeit bisection(array,val)
print( find_nearest1(array,val))
%timeit find_nearest1(array,val)
print( find_nearest2(array,val))
%timeit find_nearest2(array,val)
print( find_nearest3(array,val))
%timeit find_nearest3(array,val)
print( find_nearest4(array,val))
%timeit find_nearest4(array,val)
print( find_nearest5(array,val))
%timeit find_nearest5(array,val)
print( find_nearest6(array,val))
%timeit find_nearest6(array,val)
(50000, 50000)
100000 loops, best of 3: 4.4 µs per loop
50001
1 loop, best of 3: 180 ms per loop
50001
1000 loops, best of 3: 267 µs per loop
[50000]
1000 loops, best of 3: 390 µs per loop
50001
1000 loops, best of 3: 259 µs per loop
50001
1000 loops, best of 3: 1.21 ms per loop
[50000]
1000 loops, best of 3: 746 µs per loop
对于大型阵列,二等分与次优的180us和最长的1.21ms相比较给出4us(约快100-1000倍)。对于较小的阵列,速度要快2到100倍。
array太小,则方法2似乎是最快的”。您的意思是@JoshAlbert多小?
这是在向量数组中查找最近的向量的扩展。
import numpy as np
def find_nearest_vector(array, value):
idx = np.array([np.linalg.norm(x+y) for (x,y) in array-value]).argmin()
return array[idx]
A = np.random.random((10,2))*100
""" A = array([[ 34.19762933, 43.14534123],
[ 48.79558706, 47.79243283],
[ 38.42774411, 84.87155478],
[ 63.64371943, 50.7722317 ],
[ 73.56362857, 27.87895698],
[ 96.67790593, 77.76150486],
[ 68.86202147, 21.38735169],
[ 5.21796467, 59.17051276],
[ 82.92389467, 99.90387851],
[ 6.76626539, 30.50661753]])"""
pt = [6, 30]
print find_nearest_vector(A,pt)
# array([ 6.76626539, 30.50661753])
norm(..., axis=-1)应该比x,y通过Python迭代提取值更快。另外,x,y这里有标量吗?然后norm(x+y)是一个错误,因为例如距离(+1, -1)将被视为
idx = np.array([np.linalg.norm(x+y) for (x,y) in abs(array-value)]).argmin()
这是将处理非标量“值”数组的版本:
import numpy as np
def find_nearest(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return array[indices]
如果输入是标量,则返回一个数字类型(例如,int,float)的版本:
def find_nearest(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
out = array[indices]
return out if len(out) > 1 else out[0]
outer过ufunc 的方法,我想以后会更多地使用它。array[indices]顺便说一句,第一个函数应该返回。
np.subtract.outer如果array和/或values非常大,将生成整个外部乘积矩阵,这确实很慢并且占用大量内存。
这是@Ari Onasafari的scipy版本,请回答“ 在向量数组中查找最近的向量 ”
In [1]: from scipy import spatial
In [2]: import numpy as np
In [3]: A = np.random.random((10,2))*100
In [4]: A
Out[4]:
array([[ 68.83402637, 38.07632221],
[ 76.84704074, 24.9395109 ],
[ 16.26715795, 98.52763827],
[ 70.99411985, 67.31740151],
[ 71.72452181, 24.13516764],
[ 17.22707611, 20.65425362],
[ 43.85122458, 21.50624882],
[ 76.71987125, 44.95031274],
[ 63.77341073, 78.87417774],
[ 8.45828909, 30.18426696]])
In [5]: pt = [6, 30] # <-- the point to find
In [6]: A[spatial.KDTree(A).query(pt)[1]] # <-- the nearest point
Out[6]: array([ 8.45828909, 30.18426696])
#how it works!
In [7]: distance,index = spatial.KDTree(A).query(pt)
In [8]: distance # <-- The distances to the nearest neighbors
Out[8]: 2.4651855048258393
In [9]: index # <-- The locations of the neighbors
Out[9]: 9
#then
In [10]: A[index]
Out[10]: array([ 8.45828909, 30.18426696])
如果您有很多values要搜索的东西,这是@Dimitri解决方案的快速向量化版本(values可以是多维数组):
#`values` should be sorted
def get_closest(array, values):
#make sure array is a numpy array
array = np.array(array)
# get insert positions
idxs = np.searchsorted(array, values, side="left")
# find indexes where previous index is closer
prev_idx_is_less = ((idxs == len(array))|(np.fabs(values - array[np.maximum(idxs-1, 0)]) < np.fabs(values - array[np.minimum(idxs, len(array)-1)])))
idxs[prev_idx_is_less] -= 1
return array[idxs]
基准测试
比使用for@Demitri解决方案的循环快100倍以上
>>> %timeit ar=get_closest(np.linspace(1, 1000, 100), np.random.randint(0, 1050, (1000, 1000)))
139 ms ± 4.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> %timeit ar=[find_nearest(np.linspace(1, 1000, 100), value) for value in np.random.randint(0, 1050, 1000*1000)]
took 21.4 seconds
idx = np.searchsorted(array, values)然后:idx[array[idx] - values>np.diff(array).mean()*0.5]-=1最后return array[idx]
对于大型数组,@ Demitri给出的(出色)答案远远快于当前标记为最佳的答案。我通过以下两种方式调整了他的确切算法:
无论输入数组是否已排序,下面的函数均有效。
下面的函数返回与最接近的值相对应的输入数组的索引,该值更为通用。
请注意,下面的函数还处理特定的边缘情况,这会导致@Demitri编写的原始函数存在错误。否则,我的算法与他的算法相同。
def find_idx_nearest_val(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
x = np.array([2038, 1758, 1721, 1637, 2097, 2047, 2205, 1787, 2287, 1940, 2311, 2054, 2406, 1471, 1460])。使用find_nearest(x, 1739.5)(最接近第一个分位数的值),我得到 1637(合理的)和1(错误的?)。
这是unutbu答案的矢量化版本:
def find_nearest(array, values):
array = np.asarray(array)
# the last dim must be 1 to broadcast in (array - values) below.
values = np.expand_dims(values, axis=-1)
indices = np.abs(array - values).argmin(axis=-1)
return array[indices]
image = plt.imread('example_3_band_image.jpg')
print(image.shape) # should be (nrows, ncols, 3)
quantiles = np.linspace(0, 255, num=2 ** 2, dtype=np.uint8)
quantiled_image = find_nearest(quantiles, image)
print(quantiled_image.shape) # should be (nrows, ncols, 3)
我认为最Python化的方式是:
num = 65 # Input number
array = n.random.random((10))*100 # Given array
nearest_idx = n.where(abs(array-num)==abs(array-num).min())[0] # If you want the index of the element of array (array) nearest to the the given number (num)
nearest_val = array[abs(array-num)==abs(array-num).min()] # If you directly want the element of array (array) nearest to the given number (num)
这是基本代码。您可以根据需要将其用作功能
所有答案都有助于收集信息以编写高效的代码。但是,我编写了一个小的Python脚本来针对各种情况进行优化。如果对提供的数组进行了排序,那将是最好的情况。如果搜索指定值最近点的索引,则bisect模块是最省时的。当一个搜索索引对应于一个数组时,numpy searchsorted效率最高。
import numpy as np
import bisect
xarr = np.random.rand(int(1e7))
srt_ind = xarr.argsort()
xar = xarr.copy()[srt_ind]
xlist = xar.tolist()
bisect.bisect_left(xlist, 0.3)
在[63]中:%time bisect.bisect_left(xlist,0.3)CPU时间:用户0 ns,sys:0 ns,总计:0 ns墙壁时间:22.2 µs
np.searchsorted(xar, 0.3, side="left")
在[64]中:%time np.searchsorted(xar,0.3,side =“ left”)CPU时间:用户0 ns,sys:0 ns,总计:0 ns挂墙时间:98.9 µs
randpts = np.random.rand(1000)
np.searchsorted(xar, randpts, side="left")
%time np.searchsorted(xar,randpts,side =“ left”)CPU时间:用户4 ms,sys:0 ns,总计:4 ms挂墙时间:1.2 ms
如果我们遵循乘法规则,那么numpy应该花费〜100毫秒,这意味着〜83X更快。
import numpy as np
def find_nearest(array, value):
array = np.array(array)
z=np.abs(array-value)
y= np.where(z == z.min())
m=np.array(y)
x=m[0,0]
y=m[1,0]
near_value=array[x,y]
return near_value
array =np.array([[60,200,30],[3,30,50],[20,1,-50],[20,-500,11]])
print(array)
value = 0
print(find_nearest(array, value))
可能对ndarrays:
def find_nearest(X, value):
return X[np.unravel_index(np.argmin(np.abs(X - value)), X.shape)]
return np.abs(array-value).min()给出错误的答案。这为您提供了绝对值距离的最小值,并且我们需要以某种方式返回实际的数组值。我们可以添加value并接近,但是绝对值使事情