Lambdas不是引入懒惰的唯一方法。使用C ++中的Expression Templates,惰性评估相对简单。不需要关键字lazy
,可以在C ++ 98中实现。上面已经提到了表达式树。表达式模板是糟糕的(但很聪明)人的表达式树。诀窍是将表达式转换为Expr
模板的嵌套嵌套实例化树。构造后分别评估树。
下面的代码实现短路&&
和||
运营商类S
,只要它提供logical_and
和logical_or
免费的功能和它可转化成bool
。该代码在C ++ 14中,但该思想也适用于C ++ 98。参见现场示例。
#include <iostream>
struct S
{
bool val;
explicit S(int i) : val(i) {}
explicit S(bool b) : val(b) {}
template <class Expr>
S (const Expr & expr)
: val(evaluate(expr).val)
{ }
template <class Expr>
S & operator = (const Expr & expr)
{
val = evaluate(expr).val;
return *this;
}
explicit operator bool () const
{
return val;
}
};
S logical_and (const S & lhs, const S & rhs)
{
std::cout << "&& ";
return S{lhs.val && rhs.val};
}
S logical_or (const S & lhs, const S & rhs)
{
std::cout << "|| ";
return S{lhs.val || rhs.val};
}
const S & evaluate(const S &s)
{
return s;
}
template <class Expr>
S evaluate(const Expr & expr)
{
return expr.eval();
}
struct And
{
template <class LExpr, class RExpr>
S operator ()(const LExpr & l, const RExpr & r) const
{
const S & temp = evaluate(l);
return temp? logical_and(temp, evaluate(r)) : temp;
}
};
struct Or
{
template <class LExpr, class RExpr>
S operator ()(const LExpr & l, const RExpr & r) const
{
const S & temp = evaluate(l);
return temp? temp : logical_or(temp, evaluate(r));
}
};
template <class Op, class LExpr, class RExpr>
struct Expr
{
Op op;
const LExpr &lhs;
const RExpr &rhs;
Expr(const LExpr& l, const RExpr & r)
: lhs(l),
rhs(r)
{}
S eval() const
{
return op(lhs, rhs);
}
};
template <class LExpr>
auto operator && (const LExpr & lhs, const S & rhs)
{
return Expr<And, LExpr, S> (lhs, rhs);
}
template <class LExpr, class Op, class L, class R>
auto operator && (const LExpr & lhs, const Expr<Op,L,R> & rhs)
{
return Expr<And, LExpr, Expr<Op,L,R>> (lhs, rhs);
}
template <class LExpr>
auto operator || (const LExpr & lhs, const S & rhs)
{
return Expr<Or, LExpr, S> (lhs, rhs);
}
template <class LExpr, class Op, class L, class R>
auto operator || (const LExpr & lhs, const Expr<Op,L,R> & rhs)
{
return Expr<Or, LExpr, Expr<Op,L,R>> (lhs, rhs);
}
std::ostream & operator << (std::ostream & o, const S & s)
{
o << s.val;
return o;
}
S and_result(S s1, S s2, S s3)
{
return s1 && s2 && s3;
}
S or_result(S s1, S s2, S s3)
{
return s1 || s2 || s3;
}
int main(void)
{
for(int i=0; i<= 1; ++i)
for(int j=0; j<= 1; ++j)
for(int k=0; k<= 1; ++k)
std::cout << and_result(S{i}, S{j}, S{k}) << std::endl;
for(int i=0; i<= 1; ++i)
for(int j=0; j<= 1; ++j)
for(int k=0; k<= 1; ++k)
std::cout << or_result(S{i}, S{j}, S{k}) << std::endl;
return 0;
}
operator&&(const Foo& lhs, const Foo& rhs) : (lhs.bars == 0)